LDA などのトピックモデルの評価指標として、Perplexity と Coherence の 2 つが広く使われています。 Perplexity はモデルの予測性能を測るための指標であり、Coherence は抽出されたトピックの品質を評価するための指標です。 トピックモデルは確率モデルであるため、Perplexity の定義は明確です。 一方、Coherence は「トピックが人間にとって分かりやすいかどうか」を評価する必要があるため、その算出方法について様々な議論があります。 本記事では、Coherence に関する研究の中で、主要な流れを作っている、特に重要な 5 つの論文をピックアップして紹介したいと思います。 Coherence とは Coherence は、「トピックが人間にとって分かりやすいか」を表す指標です。 例えば、トピックが { farmers, farm, food