タグ

algorithmとrobotに関するnabinnoのブックマーク (3)

  • 進化的アルゴリズム - Wikipedia

    進化的アルゴリズム(しんかてきアルゴリズム、evolutionary algorithm、EAと略記)は進化的計算の一分野を意味し、人工知能の一部である。個体群ベースのメタヒューリスティックな最適化アルゴリズムの総称である。そのメカニズムとして生殖、突然変異、遺伝子組み換え、自然淘汰、適者生存といった進化の仕組みに着想を得たアルゴリズムを用いる。最適化問題の解の候補群が生物の個体群の役割を果たし、コスト関数によってどの解が生き残るかを決定する。それが繰り返された後、個体群の進化が行われる。 EAの例を以下に示す。これらの技法は質的には同様だが、実装の詳細は異なっており、適用される問題の分野が異なる。 遺伝的アルゴリズム これは EA の中でも最も一般的な手法である。問題の解を探索するにあたって数値の列を使用し(2進数を使うのが古典的だが、解決すべき問題に合わせて最適な形式が選択され、2進

  • 進化ロボティクス - Wikipedia

    進化ロボティクス(しんかロボティクス、英: Evolutionary robotics(英語版)、ER)[1][2]とは、自律型ロボット(英語版)のコントローラに進化的計算を使うロボティクスの一分野である。進化的計算のように進化的ロボティクスと呼ぶ場合もある[3]。 進化ロボティクスにおけるアルゴリズムは、初期状態では所定の確率分布に従ったコントローラ候補群を操作することが多い。それに対して適応度関数を繰り返し使うことで徐々に変化していく。進化的計算の主要な技法である遺伝的アルゴリズムの場合、コントローラ候補の個体群は交叉や突然変異といった操作によって成長し、適応度関数によって選別される。コントローラ候補とは具体的にはニューラルネットワークの部分集合の場合もあるし、"IF THEN ELSE" 型の規則群の場合もある。理論的には、コントローラ候補としては任意の制御規則(機械学習ではポリシー

  • 1