タグ

complex-numberとmathematicsに関するnabinnoのブックマーク (5)

  • カール・フリードリヒ・ガウス - Wikipedia

    Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス([ɡaʊs]; ドイツ語: Johann Carl Friedrich Gauß  listen[ヘルプ/ファイル]、ラテン語: Carolus Fridericus Gauss、1777年4月30日 - 1855年2月23日)は、ドイツ数学者・天文学者・物理学者。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する(→ガウスにちなんで名づけられたものの一覧)。19世紀最大の数学者の一人であり[1]、アルキメデス、ニュートンと並んで最も偉大な数学者の一人に称されている[2][3]。 略歴と業績[編集] 1777年 - ブラウンシュヴァイクに生まれる。 17

    カール・フリードリヒ・ガウス - Wikipedia
  • 複素平面 - Wikipedia

    この項目では、複素数全体を表す C(実数で考えると平面、複素数で考えると「直線」)について説明しています。複素数を成分とする「平面」C2については「複素数空間」をご覧ください。 複素平面 数学において、複素平面(ふくそへいめん、独: Komplexe Zahlenebene, 英: complex plane)[1]あるいは数平面[2](すうへいめん、独: Zahlenebene)、z-平面とは、複素数 z = x + iy を直交座標 (x, y) に対応させた直交座標平面のことである。複素数の実部を表す軸を実軸 (real axis) (実数直線)、虚部を表す軸を虚軸 (imaginary axis) という。 1811年頃にガウスによって導入されたため、ガウス平面 (Gaussian plane) とも呼ばれる[3]。一方、それに先立つ1806年に Jean-Robert Argan

    複素平面 - Wikipedia
  • class Complex (Ruby 1.8.7)

    クラスの継承リスト: Complex < Numeric < Comparable < Object < Kernel 要約 複素数を扱うためのクラスです。 このライブラリを require すると、Math モジュールが複素数対応に拡張されます。 対象となる複素数を以下のように極座標表示した時の z = a + b * i = r * exp(i * t) 偏角 t は[-π,π]の範囲であると考えて、関数は定義されます。 Complex#argを参照して下さい。 以下が複素関数の定義です。 abs(z) = r sqrt(z) = sqrt(r) * exp(i * t/2) exp(z) = exp(a) * exp(i * b) log(z) = log(r) + i * t sin(z) = (exp(i * z) - exp(-i * z)) / 2i cos(z) = (ex

  • 複素解析 - Wikipedia

    複素関数f(z) = (z2 − 1)(z − 2 − i)2/(z2+2+2i)のグラフ。色相は偏角を表し、明度(このグラフでは周期的に変化させている)は絶対値を表す。 数学の一分野である複素解析(ふくそかいせき、英: complex analysis)は、複素数上で定義された関数の微分法、積分法、変分法、微分方程式論、積分方程式論などの総称であり[1]、関数論とも呼ばれる[2][3][4]。初等教育以降で扱う実解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といえば複素解析を意味することもある。複素解析の手法は、応用数学を含む数学全般、(流体力学などの)理論物理学、(数値解析[5][6]や回路理論[7]をはじめとした)工学などの多くの分野で用いられている。 歴史[編集] 複素解析の理論に貢献した先人[編集] 複素解析は最も古くからある数学の分野の一つであり

    複素解析 - Wikipedia
  • 複素数 - Wikipedia

    複素数 z = a + bi(a, b は実数)は、複素平面では、直交座標 (a, b) に対応し、それはアルガン図上のベクトル空間である。"Re" は実軸、"Im" は虚軸を意味する符牒であり、i は虚数単位と呼ばれる i2 = −1 を満たす数である。 数学における複素数(ふくそすう、(英: complex number)とは、2つの実数 a, b と虚数単位 i = √−1 を用いて z = a + bi と表すことのできる数のことである[注釈 1]。1, i は実数体上線型独立であり、複素数は、係数体を実数とする、1, i の線型結合である。実数体 R 上の二次拡大環の元であるため、二元数の一つである。 複素数全体からなる集合を、太字の C あるいは黒板太字で ℂ と表す。C は可換体である。体論の観点からは、複素数体 C は、実数体 R に √−1 を添加して得られる体の拡大であ

    複素数 - Wikipedia
  • 1