初めて気がつく瞬間 子どもと一緒に過ごすようになってから、初めて食べるものの反応を楽しみにしてきた。初めてのコーラとか、初めてのグミ、初めてのガリガリくんとか。明らかにおいしいものじゃなくてもいい。初めてのウニとか初めてのゴーヤとか。目を見開いて驚いたり、文字で表現し…

初めて気がつく瞬間 子どもと一緒に過ごすようになってから、初めて食べるものの反応を楽しみにしてきた。初めてのコーラとか、初めてのグミ、初めてのガリガリくんとか。明らかにおいしいものじゃなくてもいい。初めてのウニとか初めてのゴーヤとか。目を見開いて驚いたり、文字で表現し…
CUDA(Compute Unified Device Architecture:クーダ)とは、NVIDIAが開発・提供している、GPU向けの汎用並列コンピューティングプラットフォーム(並列コンピューティングアーキテクチャ)およびプログラミングモデルである[5][6][7]。専用のC/C++コンパイラ (nvcc) やライブラリ (API) などが提供されている。なおNVIDIA製GPUにおいては、OpenCL/DirectComputeなどの類似APIコールは、すべて共通のGPGPUプラットフォームであるCUDAを経由することになる[8]。 CUDAの処理の流れ 1. メインメモリ(ホストメモリ)からデータをGPU用メモリ(デバイスメモリ)にコピーする。 2. CPUがGPUに対して処理を指示する。 3. GPUが必要なデータを取り込み各コアで並列実行する。 4. 結果をGPU用メモリか
GPGPU(General-purpose computing on graphics processing units; GPUによる汎用計算)とは、GPUの演算資源を画像処理以外に応用する技術である[1][2]。ビッグデータなどに対し大量の科学技術計算などを実行できるため、広く使われるようになった[3]。2022年、単一マシンとしては世界初のエクサスケールコンピュータとなった米HPEの「フロンティア」にもベクトル計算用にAMDのGPUが搭載されるなど、世界最速を競うスーパーコンピュータでの利用も一般的である。 GPGPUは、GPUが持つベクトル計算機としての特性を活かした汎用的なストリーム・プロセッシングの一形態である。GPUはコンピュータゲームで多用されるリアルタイム画像処理向けのデータ並列計算とパイプライン処理に特化した命令発行形態を持ち、またGPUとメインメモリ間の帯域幅は通例狭
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く