The Mark 1 Perceptron, being adjusted by Charles Wightman (Mark I Perceptron project engineer).[3] Sensory units at left, association units in center, and control panel and response units at far right. The sensory-to-association plugboard is behind the closed panel to the right of the operator. The letter "C" on the front panel is a display of the current state of the sensory input.[4] The percept
Let’s take a look at the perceptron: the simplest artificial neuron. This article goes from a concept devised in 1943 to a Kaggle competition in 2015. It shows that a single artificial neuron can get 0.95 AUC on an NLP sentiment analysis task (predicting if a movie review is positive or negative). In logic there are no morals. Everyone is at liberty to build up his own logic, i.e., his own form of
なんかJJUGナイトセミナーで機械学習をやるっぽくて、定員100人が40人キャンセル待ちとかになってますね。 【東京】JJUG ナイト・セミナー「機械学習・自然言語処理特集!」12/17(水)開催 - 日本Javaユーザーグループ | Doorkeeper ということで、予習用だか復習(になるかわかんないけど)用に、2008年になんか機械学習をやってたときのエントリをまとめてみます。 今でこそ機械学習はなんかもりあがってるけど、2008年にぼくがやってたとき「ところで機械学習やってなんになるの?」ってよく言われてました。ぼくも「いや、なんかそこに機械学習ってものがあるから実装してる」みたいな答えをしてた気がします。特に目的はありませんでした。 たまたま サポートベクターマシン入門 という本を見かけて、なんか実装してみたくなっただけです。 変な力がありあまってたっぽい。 機械学習ことはじめ
パーセプトロン(英: Perceptron)は、人工ニューロンやニューラルネットワークの一種である。心理学者・計算機科学者のフランク・ローゼンブラットが1957年に考案し、1958年に論文[1]を発表した。モデルは同じく1958年に発表されたロジスティック回帰と等価である。 視覚と脳の機能をモデル化したものであり、パターン認識を行う。ただし学習については自明ではなく、特に多層パーセプトロンの機械学習に関する歴史は、それがパーセプトロンの歴史だと言っても過言ではない。1960年代に爆発的なニューラルネットブームを巻き起こしたが、60年代末のミンスキーらによる、単層パーセプトロンは線形分離可能なものしか学習できないという指摘は、多層パーセプトロンの学習が当時まだよくわからなかったことから、一時研究を停滞させた。影響を受けた変種といえるニューラルネットワークも多数提案されているが、それらについて
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く