タグ

number-theoryに関するnabinnoのブックマーク (11)

  • ABC予想 - Wikipedia

    ABC予想(エービーシーよそう、英語: abc conjecture)は、1985年にジョゼフ・オステルレとデイヴィッド・マッサーにより提起された数論の予想である。オステルレ=マッサー予想(英語: Oesterlé–Masser conjecture)とも呼ばれる[1][2]。 これは多項式に関するメーソン・ストーサーズの定理の整数における類似であり、互いに素でありかつ a + b = c を満たすような3つの自然数(この予想に呼び方を合わせると)a, b, c の和と積の関係について述べている[3][4]。 ABC予想は、この予想から数々の興味深い結果が得られることから有名になった。数論における数多の有名な予想や定理がABC予想から直ちに導かれる。 ドリアン・モリス・ゴールドフェルド(英語版)は、ABC予想を「ディオファントス解析で最も重要な未解決問題」であるとしている[5]。 自然数

  • 篩法 - Wikipedia

    篩法(ふるいほう)、または単に篩(ふるい)とは、数論でよく使う技法の総称である。 整数をふるった集合 (sifted set) の元の個数を数えたり、その大きさを評価したりする。篩の操作によって得られる集合の例として、ある数を超えない素数の集合が挙げられる。つまりいにしえのエラトステネスの篩、あるいは一般にルジャンドルの篩と呼ばれるものである。しかしこれらの篩を直接用いた素数分布の定量的研究は、誤差項の累積というどうしようもない困難に直面した。20世紀に入り、双子素数予想やゴールドバッハ予想などの研究の中でこれらの困境を克服する方法が見いだされ、現在ではブルンの篩をはじめ、セルバーグの篩、大きな篩といったものが編み出されている。 これらの原始的なエラトステネスの篩の発展形においては、ふるわれた(評価されるべき)集合を、他の解析しやすいより単純な集合によって近似することや、sieving f

  • 素数探索アルゴリズムで遊ぶ

    (初出: はじめての Go 言語 (on Windows) その2 - Qiita) Go 言語は公式のドキュメントがとても充実していて(ただしほぼ英語だけど),私のような初学者に易しい環境といえる。 Documentation - The Go Programming Language : 言語仕様に関するドキュメントはこちら(一部日語化されている) Packages - The Go Programming Language : 標準パッケージのドキュメントはこちら(一部日語化されている) とはいえ,コードが実際にどのように機能するかは書いてみないと分からない部分もある。 なので,今回からは実際にコードを書きながら言語の癖のようなものを調べていくことにする。 仕事に使うなら厳密な評価が必要だけど,今のところはそんな予定もないし,まずはテキトーで(笑) 早速,みんな大好き素数探索アル

    素数探索アルゴリズムで遊ぶ
  • エラトステネスの篩 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "エラトステネスの篩" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2019年6月) エラトステネスの篩 (エラトステネスのふるい、英: Sieve of Eratosthenes) は、指定された整数以下の全ての素数を発見するための単純なアルゴリズムである。古代ギリシアの科学者、エラトステネスが考案したとされるため、この名がついている。

    エラトステネスの篩 - Wikipedia
  • Sieve of Atkin - Wikipedia

    In mathematics, the sieve of Atkin is a modern algorithm for finding all prime numbers up to a specified integer. Compared with the ancient sieve of Eratosthenes, which marks off multiples of primes, the sieve of Atkin does some preliminary work and then marks off multiples of squares of primes, thus achieving a better theoretical asymptotic complexity. It was created in 2003 by A. O. L. Atkin and

  • オイラーの定理 (数論) - Wikipedia

    nと互いに素なn以下の正の整数の集合を とする。 この要素のそれぞれにaを乗じた集合 を考えればaとnは互いに素だから、集合A,Bは法をnとしたときに一致し、当然その積も法nにおいて等しくなる。すなわちAの要素の積をPとすれば、 nとPは互いに素だから (証明終)

  • 絶対値 - Wikipedia

    この項目では、主に実数の絶対値について説明しています。その他の場合の詳細については「#その他の絶対値の各リンク先」をご覧ください。 数の絶対値は零からの距離と考えられる 数学における実数 x の絶対値(ぜったいち、英: absolute value)または母数(ぼすう、英: modulus)|x| は、その符号を無視して得られる非負の値を言う。つまり正数 x に対して |x| = x および負数 x に対して |x| = −x(このとき −x は正)であり、また |0| = 0 である。例えば 3 の絶対値は 3 であり −3 の絶対値も 3 である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的

  • 抽象代数学 - Wikipedia

    抽象代数学(ちゅうしょうだいすうがく、英: abstract algebra)とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。 概要[編集] 二十世紀初頭の揺籃期には現代代数[1]ともよばれ、数学における厳密さへの指向のもととなった。はじめは数学全体と自然科学の多くが依存している古典的な代数の論理的前提が記号論理学による公理の形で書き下され、それをもとに群論や環論などの理論が純粋数学として具現化するという形で理論が発展した。現在では抽象代数学という言葉はそういった諸分野の総体を、実数、複素数や未知数からなる代数的な数式や方程式の変形のやり方をあつかう初等代数学(高校までの代数)から区別するために用いられている。この初等代数学は可換環論への導入的な部分とみなすこともできる。 一つの二項内算法からなる代数的構造の最も簡単なものはマ

  • 数論 - Wikipedia

    通常代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。 初等整数論 他の分野の数学的手法を使わずに問題に取り組む、数論の中で最も基礎的な土台をなす。フェルマーの小定理やオイラーの定理、平方剰余の相互法則などはこの分野の成果である。 代数的整数論 扱われる対象は整数というよりも代数的整数である。従って、代数的な整数論と読むよりも代数的整数の論と読む方が正しいと考えられる。ガウスの整数を研究したカール・フリードリヒ・ガウスがおそらくこの分野の創始者である。体論はこの分野の基礎的根幹であって、ガロア理論は(他の数学においてもそうだが)基的な道具である。代数体のアーベル拡大の統制を記述する類体論も、この分野の大きな成果である。元来の岩澤理論もここに分類されよう。 解析的整数論 微積分や複素関数論等の解析学的手法を用いて問題に取り組む。この分野は初めて解析的な手法を系統的に数論に

    数論 - Wikipedia
  • アンドリュー・ワイルズ - Wikipedia

    サー・アンドリュー・ジョン・ワイルズ(Sir Andrew John Wiles, 1953年4月11日 - )は、イギリスの数学者。「フェルマーの最終定理」を証明したことで知られる[4]。専門は数論[5]。1982年よりプリンストン大学教授、2010年よりオックスフォード大学教授[5]。 フェルマーの銅像の前にて (ボーモン=ド=ロマーニュ、1995年10月) 10歳のときにフェルマーの最終定理に出会い数学の道を進む[5]。ケンブリッジ大学卒業。大学院でジョン・コーツの指導の下、岩澤理論と楕円曲線論を研究し、博士号を取得した。1982年よりプリンストン大学教授[5]。1989年王立協会フェロー選出。2010年よりオックスフォード大学教授[5]。 フェルマーの最終定理の証明(1995年)の他にも、主な業績に岩澤理論の主予想の証明(1984年、バリー・メイザーとの共同研究)やバーチ・スウィン

    アンドリュー・ワイルズ - Wikipedia
  • フェルマーの最終定理 - Wikipedia

    フェルマーの解説、特に「フェルマーの最後の定理」(Observatio Domini Petri de Fermat) を含む1670年版ディオファントスの『算術』。 ピエール・ド・フェルマー フェルマーの最終定理(フェルマーのさいしゅうていり、英: Fermat's Last Theorem)とは、3 以上の自然数 n について、xn + yn = zn となる自然数の組 (x, y, z) は存在しない、という定理である[注釈 1]。 フェルマーの大定理とも呼ばれる。ピエール・ド・フェルマーが「驚くべき証明を得た」と書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、フェルマーの死後330年経った1995年にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理またはフェルマー・ワイルズの定理とも呼ばれるようになった[1]。 17世紀、フラ

    フェルマーの最終定理 - Wikipedia
  • 1