Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに Python-MIP版の記事を作成しました。モデラーとしてPuLPよりPython-MIPの方がメリットが多いので、ぜひ、下記の記事も参考にしてください。 最適化におけるPython(Python-MIP版) 概要 私は、業務で、組合せ最適化技術を用いたソフトウェア開発(例えば、物流における輸送コストの最小化など)を行っています。以前は、C++やC#を用いて、最適化のモデルを作成していましたが、最近ではPythonを用いることが多いです。 ここでは、最適化におけるPythonについて紹介します。 Pythonのメリット Pyt
こんにちは。データ分析部のオギワラです。最近は「NANIMONO (feat.米津玄師)」をよく聞いています。 今回はPythonのデータ分析ライブラリであるPandasについて、実践的なテクニックを「データ処理」「データ集計(Group By)」「時系列処理」の3カテゴリに分けてご紹介していきます。 Pandasに関する基本的な内容については、前エントリーで既に紹介されているので、是非こちらもご一読して頂けると幸いです。 data.gunosy.io データ処理 データの取り出し(query) 条件文に基づくデータ処理の適用(where) 各行への関数の適用(apply) データ集計(Group By) カラム毎に異なる集計を適用する(agg) 最大・最小値である行を取り出す(first) 標準化や正規化処理を適用する(transform) 時系列処理 時間の丸め処理(round) 時系
サンプルデータの抽出 統計解析においてはデータの前処理が欠かせません。まず計算機で扱えるようデータを読み込むわけですが、大きめのデータを扱う計算処理においてはそのターンアラウンドがしばしば問題になります。このようなときに採るべき策はいくつかあります。 データのサイズを減らす ボトルネックを特定し計算量の削減をする 計算機の性能を上げる ビッグデータなどと言われて久しいですが実際には標本のサイズを大きく取る必要はありません。標本抽出法によって有意なサンプルを抜きだしましょう。 多くのデータ集中処理では I/O がボトルネックになります。このとき必要なデータだけを読み込むようにする、もとのデータを適切に分割して入力サイズそのものを減らす、といったことを検討するのが良いでしょう。 サンプルデータのスライスと集計 スライシング pandas でデータを扱う場合、スライシングは簡単におこなえます。
VirtualBox とは VirtualBox は x86 仮想化(その辺に転がっている普通のPC・サーバ)を仮想化するためのソフトウェア。 正式名称は Oracle VM VirtualBox。現在は Oracle が開発を行っている。 既存の環境に影響を与えずに、色々実験する際にはとっても便利なツール。 Vagrant とは Vagrant は仮想環境の管理をコンソールから行い易くするためのツール。 また、有志が作ってくれた Box を利用することで楽にテスト環境を構築することも出来る。 これを導入しておくと、各種環境を構築する際の手間が省けることが多い。 IPython とは IPython は既存の Python の対話型インタプリタを大幅に拡張したもの。 入力時の補完機能、クラスタ環境における並列処理、コマンドラインシェル機能、 GUI周りのツールキットなどの拡張が行われている
Table Of Contents What’s New v0.19.0 (October 2, 2016) New features merge_asof for asof-style time-series joining .rolling() is now time-series aware read_csv has improved support for duplicate column names read_csv supports parsing Categorical directly Categorical Concatenation Semi-Month Offsets New Index methods Google BigQuery Enhancements Fine-grained numpy errstate get_dummies now returns in
Table Of Contents What’s New Installation Contributing to pandas Frequently Asked Questions (FAQ) Package overview 10 Minutes to pandas Tutorials Cookbook Intro to Data Structures Essential Basic Functionality Working with Text Data Options and Settings Indexing and Selecting Data MultiIndex / Advanced Indexing Computational tools Working with missing data Group By: split-apply-combine Merge, join
Table Of Contents What’s New Installation Contributing to pandas Frequently Asked Questions (FAQ) Package overview 10 Minutes to pandas Tutorials Cookbook Intro to Data Structures Essential Basic Functionality Working with Text Data Options and Settings Indexing and Selecting Data MultiIndex / Advanced Indexing Computational tools Working with missing data Group By: split-apply-combine Merge, join
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く