Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? これから異常検知を勉強される初心者、中級者の方のために一問一答集を作ってみました。 実際にあった質問も含まれますが、ほとんどの質問は、私が勉強しながら疑問に思ったことです。 なお、各質問には私の失敗談を添えております。皆さんは私のような失敗をしないよう 祈っております(^^)。異常検知に特化した内容となっておりますので、ご了承ください。 初心者の方向け 勉強の仕方編 Q:異常検知を勉強したいのですが、何から手をつけて良いのか分かりません。 A:書籍を買って読むのがおススメです。 最初、私はネット情報で勉強していました。しかし、それにも限
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ターゲット 機械学習、ディープラーニングに興味を持ち、チュートリアル通りにMNISTを動かしてみて機械学習の入り口に立ってみたものの、さて次は何をしようか?という方。 CNNを使った画像認識を勉強したものの、自分のローカル環境(CPU)では待てど暮らせど学習が進まない、ディープラーニングにはどうやらGPUなるものが必要らしい。という方。 ディープラーニングを勉強するためにわざわざGPU環境を構築するのは如何なものか。クラウドで手軽にテストをしてみたい。という方。 自分でGPU環境を構築すると、学習を始めるまでに必要な環境構築にうんざりし
Entity Embeddingsという深層学習の手法があります。深層学習がよく使われる画像分析や音声分析などのデータとは違う、カテゴリ変数や順序変数の特徴量を学習する時に使います。 Entity Embeddingsが広く知られるようになったきっかけは、KaggleのRossmann Store Salesコンペでした。1位と2位のチームがドメイン知識をフル活用したアプローチをしたのに対し、この手法を活用したチームはドメイン知識の無い中なんと3位に入賞しました。コンペの説明と、使われた手法については、3位のNeokami Incのインタビュー記事、使われたソースコード、コンペ後に発表した手法に関する論文などで学ぶことができます。 タイタニック号生存者予測コンペのサンプルデータに対し、このEntity Embeddingsを実装するにはどうすれば良いのでしょうか。 0. 環境構築 環境構築
◆ はじめに 先月ようやく、今時のGPU付きのノートパソコンを購入できたので、本格的に趣味でDeepLearningに取り組めるようになった。 ただ、セマンティック・セグメンテーションに興味を持ってあれこれとモデルを作り始めてみたものの、最終生成されたモデルのサイズが 500MB とか、200MB とか、ロースペック端末では現実的に利用不可能な巨大なサイズとなることが分かり、途方に暮れていた。 都合上、 Pure Caffe や Pure Tensorflow 、あるいは、それらの派生フレームワーク で実装できないモデルは除外して検証してきている。 目的の本質は、 Neural Compute Stick + RapberryPi の構成でセマンティック・セグメンテーションをブーストすること、なのだが、NCSDK側のAPIが各レイヤーに対応していない、あるいは、中間コード生成時に floa
RefineDetとは Single-Shot Refinement Neural Network for Object Detection ⇒ RefineDet (Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, Stan Z. Li:2017/11/18) ソースはこちらから。 物体検出アルゴリズムのひとつで、SSDよりやや速度は劣るが、認識精度が高い。 Two-Step Cascaded Regressionという仕組みで、 より小さな物体に対しての認識が可能なようです。 ※以下の記事で日本語でも解説されているので、是非ご一読ください。 リアルタイム物体検出向けニューラルネット、SSD(Single Shot Multi Detector)及びその派生モデルの解説 その他のアルゴリズムと比べるとこんな感じ。 System VOC200
はじめに この記事は OpenCV Advent Calendar 2017 の 20日目の記事です。 (12/20 PM 追記) SHARP 公式さんから言及をいただきました、ありがとうございます! オーナーさんによるロボホンのアプリ実装例 → 万年アドベントカレンダーを実装した(OpenCV+Deep Neural Network+RoBoHoN) https://t.co/HmoOC2Rvps — SHARP シャープ株式会社 (@SHARP_JP) 2017年12月20日 アドベントカレンダーを開け続けたい 今年初めて、我が家にリアル・アドベントカレンダーが導入されて、毎日たのしく開けています。 X'mas が近付き、のこり日数も少なくなってきて、懸念される「家族のアドベントカレンダー・ロス」の解決策として、開け続けられる万年アドベントカレンダーを実装しました。 ロボホンがカレンダ
やること ゴリラの画像とチンパンジーの画像を分類してくれる分類器を作ろうと思います。 ゴリラの画像16枚、チンパンジーの画像16枚で試してみます。 環境 OS X El Capitan 10.11.6 今回はMacOSにDockerでCaffeを導入しようと思います。Ubuntuで導入した方が色々とよさそうな感じだったんですが、今回はDockerの使い方と軽くCaffeを触りたかっただけなのでMacOSにしました。 docker DockerをMacにインストールする (更新:2017/5/26) dockerが無事インストールできたら上のメニューバーに鯨のマークが出ます。可愛いですね。 docker version Client: Version: 17.09.1-ce API version: 1.32 Go version: go1.8.3 Git commit: 19e2cf6 B
Deep Learningフレームワークの最新のトレンドを調べたいと思い、現時点の情報をGitHubリポジトリから自動で取得するpythonスクリプトを作りました。 取得する情報 各リポジトリに対して、以下の情報を取得します。 Starの数 Forkの数 Issueの数 情報を取得するリポジトリ 以下のフレームワークのトレンドを取得します。 Tensorflow Chainer Caffe 実行環境 Ubuntu 16.04 LTS Python 3.6.0 jqコマンド(sudo apt-get install jq) スクリプト import subprocess def res_cmd(cmd): return subprocess.Popen( cmd, stdout = subprocess.PIPE, shell=True).communicate()[0] # targets
このIntel® Movidius™ Neural Compute Stickは、イメージ最高。。。1万円でRasPiが高性能なDLマシンになっちゃう♬ ということで、半年以上たったので安定しているはずということで試してみました。 というか、RasPi使っていろいろ物体検出とかやれそうだなということで期待してやってみました。 結果から書くと、出来ました! 残念ながら、ここにたどり着けたのは幸運だったかもしれません。 ということで、苦労話は無しで、マネしてもらえればほぼ出来ると思います。 ※参考はたくさんありますが、。。すべての記載は控えます メモリは4GB以上空きがないと厳しいと思います。 ※ウワンはSTRETCH完了時2GB残ってましたが、途中削除しつつ進めましたが最後はぎりぎりになりました やるべきこと (1)ほぼ公式のとおりやる Intel® Movidius™ NCS Quick
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く