A Simple, Portable Yet Efficient Quicksort Implementation in C Introduction What I wanted to do here was to provide a public-domain C implementation of the Quicksort algorithm, written from scratch, which anybody could use without licensing liabilities. Background Whenever I was looking for a Quicksort implementation over the Internet, I was always limited to simple, recursive, yet not quite effic
I have got this seemingly trivial parallel quicksort implementation, the code is as follows: import System.Random import Control.Parallel import Data.List quicksort :: Ord a => [a] -> [a] quicksort xs = pQuicksort 16 xs -- 16 is the number of sparks used to sort -- pQuicksort, parallelQuicksort -- As long as n > 0 evaluates the lower and upper part of the list in parallel, -- when we have recursed
Dual-Pivot Quicksort Vladimir Yaroslavskiy iaroslavski@mail.ru First revision: February 16, 2009 Last updated: September 22, 2009 Introduction Sorting data is one of the most fundamental problems in Computer Science, especially if the arranging objects are primitive ones, such as integers, bytes, floats, etc. Since sorting methods play an important role in the operation of computers and other dat
In this article, we will discuss the implementation of Quicksort Java algorithm. Quicksort is the most widely used sorting algorithm. Quick sort is faster than most other common sorting algorithms. It was developed by the famous Computer Scientist Tony Hoare and it is based on the Divide and Conquer Algorithm. First, we are going to explain how Quick sort works on an algorithmic level, with some s
JavaScript performance comparison Test case created by a on 2014-8-25 Preparation code <script> Benchmark.prototype.setup = function() { var inputArray = Array.apply(null, new Array(1e4)).map(function(e) { return ~~(Math.random() * 1e4); }); function quickSort(array) { var sorted = array.slice(0); return (function sort(left, right) { if (left < right) { var pivot = sorted[(left + right) >> 1]; var
See related links to what you are looking for.
Functional Programming – QuickSort and Fibonacci (Memoization) GoRuCo 2013 – Functional Programming and Ruby by Pat Shaughnessy The above is a nice session video which talks about the Ruby’s functional programming aspect, by comparing it with Haskell. There’re many topics are covered, but I found interesting about the quick sort and fibonacci examples. QuickSort In the beginning, Haskell’s quick s
- change way of protection from O(N^2) on duplicate values. Previous algorithm does additional comparisons and swaps on every split pass. Changed algorithm does one ordinal quicksort split pass, and if distribution is skewed, then additional pass to separate pivot's duplicates. Changed algorithm could be slower on very ununique slice, but it is still protected from O(N^2). - increase small slice s
Multi-key quicksort, also known as three-way radix quicksort,[1] is an algorithm for sorting strings. This hybrid of quicksort and radix sort was originally suggested by P. Shackleton, as reported in one of C.A.R. Hoare's seminal papers on quicksort;[2]: 14 its modern incarnation was developed by Jon Bentley and Robert Sedgewick in the mid-1990s.[3] The algorithm is designed to exploit the proper
multikey_quick_sort.cpp P�L�=V @k��=V #include <iostream> #include <string> #include <vector> #include <algorithm> #include <assert.h> using namespace std; // pivotを選ぶ. char find_pivot_char(vector<string> &data, int left, int right, int depth) { assert(0 <= left); assert(right <= data.size()); assert(left + 1 <= right); char a = data[left].size() <= depth ? -1 : data[left][depth]; char b = data[(l
Objective Caml Scheme探してたはずなのにこっちのほうが面白そう。 The Great Computer Language ShootoutによるとCについで2番目に速い言語らしい。 (LOC(line of code)を入れればダントツでトップです。) MSにもF#なんてあるんだってさ。 第一印象は頭のよい言語。慣れればいろいろ楽に書けそう。 関数型って概念以外全部初めてだから感動が多いです。 計算機が速いから使える言語ってだけではなさそう。 インタープリタ、コンパイラ両方あるからちょっと書きたい時にも便利かもね。 高階関数、カリー化、ラムダ式、多相型、C先生の講義で聞いた用語が。。。 Boostあたりで近いこと色々やろうとしてるけどやっぱり本物は美しい。 しかしOCamlのサイトを見てると米澤研という単語をよく見るなぁ。 最初に見たサイトにのってたq
① 配列から基準値となるデータを任意に選ぶ。 ② 基準値と各データを比較し小さければ基準値より前に、大きければ後ろに移動します。 ③ 基準値より前の配列、後ろの配列でそれぞれ再び基準値を選び出し同様の操作を行う。 まず始めに、「基準値」と呼ばれるデータを決定します。幾つか方法がありますが、今回は配列の中央のデータを基準値とします。基準値を各データと比較し、各データのほうが小さければ、そのデータを配列の前のほうに移動し、大きければ後ろのほうに移動します。この操作をすべてのデータに対して行うと、配列の前半には基準値より小さいデータが、後半には大きいデータが入ります。前半のデータ、後半のデータそれぞれで再び基準値を選び、同様の操作を繰り返します。最終的には操作対象の範囲に入る値が1つになりソートが終了します。 例として次のような配列Nがあります。 この配列Nを配列の中央のデータを基準値と
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く