You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Deep Learning Advent Calendar 2016の20日目の記事です。 ConvNetの歴史とResNet亜種、ベストプラクティスに関連スライドがあります(追記) 背景 府大生が趣味で世界一の認識精度を持つニューラルネットワークを開発してしまったようです。 M2の学生が趣味でやっていたCIFAR10とCIFAR100の認識タスクで,現時点での世界最高性能の結果を出したそうだ…趣味でっていうのが…https://t.co/HKFLXTMbzx — ニーシェス (@lachesis1120) 2016年12月7日 府
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 原文のリンク Hybrid computing using a neural network with dynamic external memory (2016) 1. 要約と背景 DeepMind社(現Google子会社)は2016年10月27日に、全く新しいタイプの人工知能のフレームワークをNature論文に発表しました。その名も、DNC (Differential Neural Computer)といいます。 この人工知能の斬新な点は何と言っても外部記憶装置 (external memory)の存在です。これはヒトの海馬のような
前にDQNの再現の記事を書いてからほぼ1年が空いてしまいました.DQNの新しい論文が2月にNatureに載ったのは記憶に新しいですが,それから研究はさらに加速し,最近では自分の感覚としてはarxiv含めて平均すると1週間に1論文くらいのペースで深層強化学習の研究が発表されているのではないかと思います(ちゃんと計算してないので全然違ってたらすみません). これだけ論文が増えるとまとめのようなものが欲しくなるので,自分で作ることにしました. https://github.com/muupan/deep-reinforcement-learning-papers まだだいぶ不完全ですし,論文リストをきちんとした形で作るのははじめてなのでいろいろと迷う部分があるのですが,これから少しずつ充実させていく予定です.
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く