Philosophy We strive to create an environment conducive to many different types of research across many different time scales and levels of risk. Learn more about our Philosophy Learn more
2006-09-11 近況 今月は貧乏なので慎しく暮らしている. 週末もひきこもりとしてオンラインの記事を読んで過ごすことに. ウェブを眺めているといいタイミングで Google の新作論文が出ていた. ありがとう, Google の中の人. これ. GFS, MapReduce, Sawzall とつづく Google インフラ N 部作の 4 章が幕をあげた. 実はデータベースも作ってるんだぜ, という話. BigTable という名前だけは以前から O'Reilly Radar などに登場していた. ようやく公式な文書があらわれた. BigTable は GFS をはじめとする Google インフラの上に作られた分散データベース. 少し変わったデータモデルと, 運用までワンセットのヘビーな実装を持つ. 実装の話もまあ面白いんだけれど, それよりデータモデルが印象的だった. 先にその
Google の鵜飼文敏さんによる講演会「大規模データ処理を可能にする Google の技術」に行ってきました。内容的には筑波大学で開かれたものと同じではないかと思います (「新ビジネスモデル」がそのままだったことなどから)。以下、上記記事に載っていないことを中心にメモから抜書きを。 此頃 Google にはやる物 現在 Google では Google の使命 (Google's mission is to organize the world's information and make it universally accessible and useful...) の早打ちが流行中。鵜飼さんは 50 秒程度、一番速い人は 30 秒程度。 Google の扱う情報 Google のいう「情報」はインターネット上のものだけに限らない (例: Google ブック検索)。 データセンター
Update 3: Presentation from the NoSQL Conference: slides, video. Update 2: Jim Wilson helps with the Understanding HBase and BigTable by explaining them from a "conceptual standpoint." Update: InfoQ interview: HBase Leads Discuss Hadoop, BigTable and Distributed Databases. "MapReduce (both Google's and Hadoop's) is ideal for processing huge amounts of data with sizes that would not fit in a tradit
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く