データから「構造」を発見する:より人間に近づく人工知能 2008年7月31日 サイエンス・テクノロジー コメント: トラックバック (1) Brandon Keim 生物学者のエルンスト・ヘッケルが作成した系統樹(現在は不正確だとされている)。 Image: WikiMedia Commons コンピューターがより人間らしく考えるのに役立つかもしれない、ある新しいパターン認識モデルが登場した。 7月28日(米国時間)刊行の『米国科学アカデミー紀要』(PNAS)に掲載されたこのモデルは、生のデータセットから出現する見込みが最も高いパターンの種類を判断する。 こうした処理は、人間が周囲の世界を理解する際に無意識のうちに使っているものだが、人工的な認識ツールでは一般に難しいとされてきた。 顔認識や系統学などに使われている現行の諸モデルでは、予想されるパターンの型があらかじめ特定されている必要があ