タグ

数学と確率に関するotori334のブックマーク (11)

  • ページランク - Wikipedia

    ページランク (PageRank) は、ウェブページの重要度を決定するためのアルゴリズムであり、検索エンジンのGoogleにおいて、検索語に対する適切な結果を得るために用いられている中心的な技術Googleの創設者のうちラリー・ペイジとセルゲイ・ブリンによって1998年に発明された[1][2]。名称の由来は、ウェブページの"ページ"とラリー・ペイジの姓をかけたものである。 PageRankはGoogleの商標であり、またPageRankの処理は特許が取得されている[3]。ただし、特許はGoogleではなくスタンフォード大学に帰属しており、Googleはスタンフォード大学から同特許の権利を独占的にライセンスされている。なお、同大学は特許の使用権と交換にGoogleから180万株を譲渡されているが、その株式は2005年に3億3,600万ドルで売却された[4][5]。 PageRankの動作概

  • ポケモンの最強タイプを考える【グラフ理論】 - Qiita

    導入 先日、ポケモンの最新作『Pokémon LEGENDS アルセウス』が発売されました。ポケモン愛好家の中で密かに話題を集めたのが、新たに登場したポケモン「ゾロア(ヒスイのすがた)」と「ゾロアーク(ヒスイの姿)」のタイプです。なんと驚くべきことに、両者のタイプは未だ登場したことのなかった「ノーマル・ゴースト」だったのです。 ポケモンを知る人には説明不要ですが、これはノーマルタイプの唯一の弱点であるかくとう技をゴーストタイプで無効化しながら、ゴーストタイプの弱点であるゴースト技をノーマルタイプで無効化するという、非常にバランスのとれた、まさに夢のような複合タイプです。一部では、この「ノーマル・ゴースト」こそ最強の組み合わせなのではないかと噂されました。 しかし、果たして当にそうなのでしょうか? ポケモンのタイプは全部で18種類あり、一匹のポケモンは二つまでタイプを持つことができます。考

    ポケモンの最強タイプを考える【グラフ理論】 - Qiita
  • マルコフ情報源

  • 自己相関 - Wikipedia

    自己相関(じこそうかん、英: autocorrelation)とは、信号処理において時間領域信号等の関数または数列を解析するためにしばしば用いられる数学的道具である。大雑把に言うと、自己相関とは、信号がそれ自身を時間シフトした信号とどれくらい一致するかを測る尺度であり、時間シフトの大きさの関数として表される。より正確に述べると、自己相関とは、ある信号のそれ自身との相互相関である。自己相関は、信号に含まれる繰り返しパターンを探すのに有用であり、例えば、ノイズに埋もれた周期的信号の存在を判定したり、 信号中の失われた基周波数を倍音周波数による示唆に基づき同定するために用いられる。 定義[編集] 自己相関は、学問領域によって定義が異なる。分野によっては自己共分散 (autocovariance) と同じ意味に使われる。 統計学[編集] 統計学において、確率過程の自己相関関数 (autocorr

  • 最大エントロピー原理 - Wikipedia

    最大エントロピー原理(さいだいエントロピーげんり、英: principle of maximum entropy)は、認識確率分布を一意に定めるために利用可能な情報を分析する手法である。この原理を最初に提唱したのは Edwin Thompson Jaynes である。彼は1957年に統計力学のギブズ分布を持ち込んだ熱力学(最大エントロピー熱力学(英語版))を提唱した際に、この原理も提唱したものである。彼は、熱力学やエントロピーは、情報理論や推定の汎用ツールの応用例と見るべきだと示唆した。他のベイズ的手法と同様、最大エントロピー原理でも事前確率を明示的に利用する。これは古典的統計学における推定手法の代替である。 今確率変数 X について、X が条件 I を満たす事だけが分かっており、それ以外に X に関して何1つ知らなかったとする。このとき、X が従う分布はどのようなものであると仮定するのが

  • 負の確率 - Wikipedia

    他にも例として、1932年にユージン・ウィグナーが量子誤り訂正の研究[7]で提案した位相空間上の擬確率分布であるウィグナー関数が挙げられる。1945年バートレットはウィグナー分布が負の値をもつことに数理論理的な矛盾がないことを見出した[8]。ウィグナー関数は量子光学分野でよく利用され、位相空間量子化の基礎となっている。また、量子干渉のある場合に負値となることから、量子干渉があることをわかりやすく示すことができる。ウィグナー関数が負値をとる領域は、量子論の不確定性原理により直接観測することが困難なほど小さいが、可観測量の期待値を求めるときに利用されている。 ファイナンス[編集] 最近になって負の確率は数理ファイナンスに応用されるようになった。計量ファイナンスにおいてはほとんどの確率はリスクニュートラル確率として知られる正の確率や擬確率である。確率論上の一連の仮定の下で、正の確率だけでなく負の

  • https://www.sk.tsukuba.ac.jp/~kiyoshi/pdf/stochasticProcessShort.pdf

    otori334
    otori334 2021/09/16
    拡散現象のモデリング 速習・確率過程入門
  • ローレンツ曲線 - Wikipedia

    典型的なローレンツ曲線 平成17年度国勢調査速報を元に作成したローレンツ曲線(都道府県別) ローレンツ曲線(ローレンツきょくせん、英: Lorenz curve)とは、ある分布を持つ事象について、確率変数が取り得る値を変数とし、確率変数の値が与えられた変数の値を超えない範囲における確率変数と対応する確率の積の和(あるいは確率変数と確率密度関数の積の積分)を、その分布に対する確率変数の期待値で割って規格化したものとして与えられる関数の幾何学的な表現のことである。言い換えると、ある集団に含まれる下位集団に対する期待値を全体の期待値で割ったものをその下位集団ごとにプロットしたものとも言える。 あるいは、確率変数の値がある値を下回る集団の割合はそれらがとり得る確率変数の値の上限と一対一に対応付けられるため、全体に対する下位集団の割合を変数とする関数としても表すことができる。 ローレンツ曲線は下位集

    ローレンツ曲線 - Wikipedia
    otori334
    otori334 2020/11/19
    むずかしく言い換える必要があるのだろう.自分の理解は二つの累積比のプロットで止まっている.あとで参照しそう,確率変数・累積分布関数と関わることなので
  • 排反事象と独立試行の違い|数学|苦手解決Q&A|進研ゼミ高校講座

    排反事象と独立試行の違い 排反と独立の違いがよくわかりません。 独立な試行では、たしたり、かけたりするみたいですが 排反と独立の違いがわからないので、どういうときにたしたり、かけたりするのか理解できません!!

    排反事象と独立試行の違い|数学|苦手解決Q&A|進研ゼミ高校講座
  • 反復試行の確率の公式とその最大値とは?Cを使う理由まで解説!

    サイコロやコイン投げを想像しながら読んでみてください。(カッコ内は具体的な例です) 公式と具体例 いま事象P(3の目が出ることとする)の確率をp(3の目が出る確率=\frac{1}{6})とし、これを繰り返し(n回)行ったときに【k回】Pが起こる(3の目が出る)確率は、 $$P_{反復試行}=p^{k}\cdot (1-p)^{n-k}\cdot {}_n\mathrm{C}_{k}$$ で求めることが出来ます。 一見するとよくわからない、難しそう・・・と避ける人がいますが、それは非常にもったいないです! これから、一つ一つの要素にわけて詳しく解説します。 なぜこの公式で反復試行の確率が求まるのか カッコ内の具体例をもとに、このヤヤコシイ公式の意味を考えていきましょう。 \(p^{k}\)について・・・(1) 全部でn回サイコロを振る中で、その内“k回”3の目が出るという事は、 1/6がk

    反復試行の確率の公式とその最大値とは?Cを使う理由まで解説!
    otori334
    otori334 2020/11/17
    独立な試行から確率漸化式へ.“反復試行の確率+最大値の例題” 大小関係を減法で考える様式.大小関係の考え方は除法より減法の方がわかりやすいと感じる.
  • 反復試行の確率の公式といろいろな例題 | 高校数学の美しい物語

    確率 ppp で成功するような試行を独立に nnn 回反復して行ったとき,nnn 回のうち kkk 回成功する確率は, nCkpk(1−p)n−k{}_n\mathrm{C}_kp^k(1-p)^{n-k}n​Ck​pk(1−p)n−k

    反復試行の確率の公式といろいろな例題 | 高校数学の美しい物語
    otori334
    otori334 2020/11/17
    独立な試行から.酔歩.最大値を求める例題の模範解答は大小関係を除法で考える様式.二項分布の確率質量関数が上に凸になるのを解析したい.
  • 1