タグ

電卓と数学に関するotori334のブックマーク (11)

  • 計算可能性理論 - Wikipedia

    この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2021年3月) 出典は脚注などを用いて記述と関連付けてください。(2017年10月) 出典検索?: "計算可能性理論" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL この記事は、全部または一部が他の記事や節と重複しています。 具体的には再帰理論との重複です。記事のノートページで議論し、 重複箇所を重複先記事へのリンクと要約文にする(ウィキペディアの要約スタイル参照)か 重複記事同士を統合する(ページの分割と統合参照)か 重複部分を削除して残りを新たな記事としてください。 (2023年12月) 計算可能性理論(けいさんかのうせいりろん、英:

  • NASAでは円周率を何桁まで使っているのか?

    円周率は2020年時点で小数点以下50兆桁まで計算されるほど途方もない桁数を持つ数です。一般的には「3」や「3.14」のような数で計算が行われますが、桁が切り捨てられるほど結果の正確さは損なわれてしまうもの。正確さが必要そうな宇宙開発の現場では「円周率を何桁まで使っているのか?」という質問に対して、アメリカ航空宇宙局(NASA)が実際に使用している値とその理由について回答しています。 How Many Decimals of Pi Do We Really Need? - Edu News | NASA/JPL Edu https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/ 「NASAのジェット推進研究所(JPL)は円周率を計算に使うとき、『3.14』を使用していますか?

    NASAでは円周率を何桁まで使っているのか?
  • 浮動小数点数 - Wikipedia

    浮動小数点数(ふどうしょうすうてんすう、英: floating-point number)は、実数をコンピュータで処理(演算や記憶、通信)するために有限桁の小数で近似値として扱う方式であり[1]、コンピュータの数値表現として広く用いられている。多くの場合、符号部、固定長の指数部、固定長の仮数部、の3つの部分を組み合わせて、数値を表現する。 この節はパターソンらの記述に基づく[1]。 実数は0以上かつ1以下のような有限の範囲でも、無限個の値(種類)が存在するため、コンピュータでは妥当なビット数で有限個の値(種類)の近似値で扱う必要がある。 実数-1/3は10進数表現では無限小数となるが、有限桁の小数で近似値を表記できる。下の例では10進数での4桁としている。 -1/3 -1 x 0.33333333333333... -1 x 0.3333 x 100 -1 x 3.333 x 10-1 下

  • FFTとは? ~本当は正しくないFFTの周波数特性~

    エンジニアや理工系の人と話をしていると、FFT=周波数特性と勘違いしている人が大勢います。それも絶対に正しいと思っている人が居るんだけどそれは大間違いです。 なるべく数式を使わずに簡単にFFTとは何であるのかを解説します。 フーリエ変換とは フーリエ級数展開とは フーリエ変換やフーリエ級数展開の特徴 標化と量子化 離散フーリエ変換(DFT)とは 高速フーリエ変換(FFT)とは FFT(DFT)の質 どうしてFFTは正しくないのか (おまけ)スペクトル推定法と基底変換 (おまけ2)フーリエ変換の存在についての補足 参考リンク 関連記事 フーリエ変換とは フーリエ変換=FFTと思っている人も多いのですが、これも間違い。 フーリエ変換とは 無限に続く任意の連続信号(1次元)を、無限の周波数までのsin波とcos波の重ねあわせとして表現できる ことを利用してある任意の信号を、sin波とcos波

    FFTとは? ~本当は正しくないFFTの周波数特性~
  • 君は逆ポーランド電卓を知っているか? ~そして自作へ

    1983年徳島県生まれ。大阪在住。散歩が趣味の組込エンジニア。エアコンの配管や室外機のある風景など、普段着の街を見るのが好き。日常的すぎて誰も気にしないようなモノに気付いていきたい。(動画インタビュー) 前の記事:タイムズパーキングの看板、でっぱってるか? でっぱってないか? > 個人サイト NEKOPLA Tumblr 逆ポーランド記法とは 世の中には、大きく分けて2種類の電卓がある。ほとんどの人が使っている普通の電卓(「中置記法の電卓」という)と、入力方法の異なる「逆ポーランド記法の電卓」だ。 これが逆ポーランド電卓(HP-16C)。どこにも“=”キーがなく、反面デカデカと“ENTER”キーがあるのが特徴 電卓の紹介をする前に、まずは「逆ポーランド記法」ってなんだ? という点について説明する必要がある。めんどうだけど、少しお付き合い下さい。 言語にはいろんな語順がある。日語だと「主語

    君は逆ポーランド電卓を知っているか? ~そして自作へ
  • セル・オートマトン - Wikipedia

    この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。 適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2022年3月) セル・オートマトンの一種ライフゲームで、ゴスパー(英語版)のグライダー銃がグライダーを放っているところ[1] セル・オートマトン(英: cellular automaton、略称:CA)とは、格子状のセルと単純な規則による、離散的計算モデルである。 計算可能性理論、数学、物理学、複雑適応系、数理生物学、微小構造モデリングなどの研究で利用される。非常に単純化されたモデルであるが、生命現象、結晶の成長、乱流といった複雑な自然現象を模した、驚くほどに豊かな結果を与えてくれる。 正確な発音に近いセルラ・オートマトンとも呼ばれることがある。セルは「細胞」「小部屋」、セルラは「細胞状の」、オートマトンは「

    セル・オートマトン - Wikipedia
    otori334
    otori334 2020/11/13
    設計図と万能機械を分離するアイデアはDNAの発見以前に発明された.散逸構造と関係してそう.
  • クワイン・マクラスキー法 - Wikipedia

    クワイン・マクラスキー法(—ほう; Quine–McCluskey algorithm/略:QM法)はブール関数を簡単化するための方法である。カルノー図と同様の目的で使われるが、コンピュータによる自動化に適しており、またブール関数が最簡形かどうか決定的に求めることができる。W・V・クワインが提案し、E・J・マクラスキーが発展させた方法なのでこの名がある。 クワイン・マクラスキー法は3段階からなる。 関数の主項をすべて求める 求めた主項を表にまとめ、必須項を求める 最簡形を求める 例[編集] 主項を求める[編集] 以下の真理値表で表されるブール関数を簡単化する。 A B C D f

  • 有限オートマトン - Wikipedia

    UMLステートマシン[編集] 統一モデリング言語(UML)には状態機械(ステートマシン)を記述するための豊富な意味論と記法がある。UMLの状態遷移図は従来の有限オートマトンの主な利点を踏襲しつつ、その欠点を克服している。大きな拡張としては、状態の階層化や直交状態の導入があり、動作の記法も拡張されている。ミーリ・マシンもムーア・マシンも記述できる。ミーリ・マシンのように状態だけでなく、イベント(入力)をきっかけとして遷移するようにも書けるし、ムーア・マシンのように遷移ではなく状態と開始動作や終了動作を対応付けることもできる。 SDLステートマシン[編集] 仕様及び記述言語(SDL) はITUの標準規格であり、遷移の際の以下のような動作を表す記号を定義している。 イベント送信 イベント受信 タイマ開始 タイマキャンセル 別の並行動作するステートマシンを開始 判断 SDLには、Abstract

    有限オートマトン - Wikipedia
  • 妥当な三段論法を導くための6つのルール・誤りについて解説 | 趣味の大学数学

    どうも、木村(@kimu3_slime)です。 今回は、妥当な三段論法を導くための6つのルール、誤りのパターンを紹介します。これは三段論法そのものの理解にもつながるでしょう。 妥当な三段論法は15種類まず前提知識を確認しておきましょう。 そもそも三段論法とは、2つの前提から1つの結論を導くような推論でした。 特に今回考察の対象としているのは、カテゴリー的三段論法です。前提と結論がカテゴリー的命題からなるもので、登場する主語述語の種類(項)が3つのものを指しています。 三段論法は、カテゴリー的命題のタイプ:叙法(A,E,I,O)と中間項の順序:格により特徴づけられます。 Sを主語、Pを述語とする。 全称肯定命題、A命題:すべてのSはPである。 全称否定命題、E命題:すべてのSはPでない。 特称肯定命題、I命題:あるSはPである。 特称否定命題、O命題:あるSはPでない。 AEE-2といったよ

    妥当な三段論法を導くための6つのルール・誤りについて解説 | 趣味の大学数学
  • コルモゴロフ複雑性 - Wikipedia

    コルモゴロフ複雑性(コルモゴロフふくざつせい、英語: Kolmogorov complexity)とは、計算機科学において有限長のデータ列の複雑さを表す指標のひとつで、出力結果がそのデータに一致するプログラムの長さの最小値として定義される。コルモゴロフ複雑度、コルモゴロフ=チャイティン複雑性 (Kolmogorov-Chaitin complexity) とも呼ばれる。 この画像はフラクタル図形であるマンデルブロ集合の一部である。このJPEGファイルのサイズは17KB以上(約140,000ビット)ある。ところが、これと同じファイルは140,000ビットよりも遥かに小さいコンピュータ・プログラムによって作成することが出来る。従って、このJPEGファイルのコルモゴロフ複雑性は140,000よりも遥かに小さい。 コルモゴロフ複雑性の概念は一見すると単純なものであるが、チューリングの停止問題やゲー

    コルモゴロフ複雑性 - Wikipedia
  • 制御工学の基礎あれこれ

    In English ■初めに PID制御や現代制御などの制御工学(理論)の基礎や、制御工学に必要な物理、数学、ツール等について説明します。 私のプロフィールを簡単に説明しますと、私は自動車関連企業に勤めており、そこで日々制御工学(理論)を利用しながら設計開発をしております。 ここで説明する内容は、制御理論を扱い実際にモノに実装していく上で最低限理解しておいた方が良い内容と思います。 少しでも皆様の役に立ち、学力の底上げに貢献し、ひいては日の発展、ひいては人類の発展に貢献できたらこの上ない喜びです。 内容を説明する際に次のことを心掛けています。 ① できるだけシンプルに。より少ない文章で内容を的確に説明する。 ② 1ページの記事のボリュームを多くし過ぎない ③ 文字のフォントは大きすぎず、行間を開けすぎない。(画面スクロールが頻繁になると情報が伝わりづらくなる) ④ 内容の説明とは直接関

  • 1