並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 25 件 / 25件

新着順 人気順

Kubeflowの検索結果1 - 25 件 / 25件

  • Kubeflow Pipelinesで日本語テキスト分類の実験管理 - やむやむもやむなし

    機械学習ワークフロー管理ツールであるKubeflowのPipelines機能を使って日本語テキスト分類の実験管理を行います。 この記事ではKubeflowのチュートリアルに従ってKubeflowのクラスタを構築してPipelinesを動かし、最後に日本語のデータセットをKubeflow Pipelinesに実際に乗せて機械学習のワークフロー管理を行うところまでまとめていきます。 Kubeflow Kubeflowとは Pipelinesとは GKEでKubeflowクラスタの構築 クラスタ構築 Workload Identityの設定 Pipelinesの基本的な使い方 Pipeline/Experiment/Run PipelineとComponent PipelineとDSL 実験管理としてのKubeflow Pipelines 日本語テキスト分類 with Pipelines Pip

      Kubeflow Pipelinesで日本語テキスト分類の実験管理 - やむやむもやむなし
    • 「Kubeflow 1.0」正式版リリース。あらゆるKubernetes上にJupyter notebookなど機械学習の開発、トレーニング、デプロイ機能を構築

      「Kubeflow 1.0」正式版リリース。あらゆるKubernetes上にJupyter notebookなど機械学習の開発、トレーニング、デプロイ機能を構築 Kubeflow開発チームは、Kubeflow 1.0の正式リリースを発表しました。 Today, Kubeflow 1.0 has been released. Check out this deep-dive to learn the core set of applications included in the open-source release, and the advantages of using it on Anthos for the enterprise → https://t.co/XV0HPvsWX9 pic.twitter.com/O2s5tpzFLz — Google Cloud Platform

        「Kubeflow 1.0」正式版リリース。あらゆるKubernetes上にJupyter notebookなど機械学習の開発、トレーニング、デプロイ機能を構築
      • AI Platform Pipelines (Kubeflow Pipelines)による機械学習パイプラインの構築と本番導入 - ZOZO TECH BLOG

        ZOZOテクノロジーズ推薦基盤チームの寺崎(@f6wbl6)です。ZOZOでは現在、米Yale大学の経営大学院マーケティング学科准教授である上武康亮氏と「顧客コミュニケーションの最適化」をテーマに共同研究を進めています。 推薦基盤チームでは上武氏のチームで構築した最適化アルゴリズムを本番環境で運用していくための機械学習基盤(以下、ML基盤)の設計と実装を行っています。本記事ではML基盤の足掛かりとして用いたAI Platform Pipelines (Kubeflow Pipelines) の概要とAI Platform Pipelinesの本番導入に際して検討したことをご紹介し、これからKubeflow Pipelinesを導入しようと考えている方のお役に立てればと思います。記事の最後には、推薦基盤チームで目指すMLプロダクト管理基盤の全体像について簡単にご紹介します。 上武氏との共同研

          AI Platform Pipelines (Kubeflow Pipelines)による機械学習パイプラインの構築と本番導入 - ZOZO TECH BLOG
        • KubeflowによるMLOps基盤構築から得られた知見と課題 - ZOZO TECH BLOG

          はじめに こんにちは。SRE部MLOpsチームの中山(@civitaspo)です。みなさんはGWをどのように過ごされたでしょうか。私は実家に子どもたちを預けて夫婦でゆっくりする時間にしました。こんなに気軽に実家を頼りにできるのも全国在宅勤務制度のおかげで、実家がある福岡に住めているからです。「この会社に入って良かったなぁ」としみじみとした気持ちでGW明けの絶望と対峙しております。 現在、MLOpsチームでは増加するML案件への対応をスケールさせるため、Kubeflowを使ったMLOps基盤構築を進めています。本記事ではその基盤構築に至る背景とKubeflowの構築方法、および現在分かっている課題を共有します。 目次 はじめに 目次 MLOpsチームを取り巻く状況 MLOps基盤の要件 MLOps基盤技術としてのKubeflow Kubeflowの構築 ドキュメント通りにKubeflowを構

            KubeflowによるMLOps基盤構築から得られた知見と課題 - ZOZO TECH BLOG
          • 入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)

            入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料) 2020年1月31日 株式会社NTTデータ / NTT DATA Yuki NishizawaRead less

              入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
            • MLOps 海外テック企業の事例とフレームワークの紹介 - Gunosyデータ分析ブログ

              はじめに こんにちはGunosy Tech Labの森本です。現在MLOps基盤を再整備しています。そこで調査した海外Tech企業の事例やMLOpsのフレームワークを紹介します。 Gunosy Tech LabのMedia MLチームではニュースアプリ(グノシー、ニュースパス、ルクラ)やクーポンアプリ(オトクル)の推薦アルゴリズムの改善を中心に機械学習を活用してアプリのサービス改善を日々行っています。過去にはチームが独立しており開発者も少数であったことから各チームがJupyter Notebook等でオフライン実験を行い、良い結果のものは本番環境に適用するためプロダクションコードを書き、レビューを行い、本番環境でA/Bテストするという流れでした。最近は開発者の人数も増え横断的にアプリのサービスを改善しているので、より効率的なMLOps基盤が求められています。 はじめに MLOpsとは 実現

                MLOps 海外テック企業の事例とフレームワークの紹介 - Gunosyデータ分析ブログ
              • KARTEにおけるKubeflow Pipelineの活用 | PLAID engineer blog

                KARTEにおけるフロントエンドと連携させたKubeflow Pipelineの活用方法について解説します

                  KARTEにおけるKubeflow Pipelineの活用 | PLAID engineer blog
                • KubeflowとJupyter Enterprise GatewayでJupyter Notebook環境をさらに便利に | CyberAgent Developers Blog

                  KubeflowとJupyter Enterprise GatewayでJupyter Notebook環境をさらに便利に AI事業本部のインフラ組織SIAでエンジニアをしている牧垣です。 はじめに Jupyter Notebookは機械学習・データ解析の分野ではすっかり空気のようなインフラになりました。仮説・実験・考察のサイクルを回しやすいので、科学分野では昔から人気があります。コードと結果が可視化できるという基本機能そのものに、作業ログや手順書・使い方ドキュメントなど、他分野での需要もあります。 夢を膨らませると用途はまだまだ思いつきそうですが、つまり「複数人で同じものを見て、同じ認識をすることができる」というのがJupyter Notebookの良いところです。「あの件、どうだった?」「あ、たぶん大丈夫だと思います」といったあやしげな状態になりにくくなります。また、可視化が容易な点も

                    KubeflowとJupyter Enterprise GatewayでJupyter Notebook環境をさらに便利に | CyberAgent Developers Blog
                  • 分散学習にはHorovodを使う 文献から学ぶクラウド機械学習のベストプラクティス

                    Machine Learning Casual Talksは、機械学習を用いたシステムを実運用している話を中心に、実践的な機械学習に関して気軽に話す会です。実際に運用していく上での工夫や、知見を共有します。今回は、ABEJAの服部圭悟氏が、文献を紹介しながら、自社のABEJA Platformでの実践例も交え、AWS環境における機械学習プロジェクトのベストプラクティスを解説しました。後半は実際の機械学習の方法について。関連資料1、関連資料2 リソースとコストの最適化、そして、機械学習ジョブの実行方法 服部圭悟氏(以下、服部):では続いて、「リソースとコストをどう最適化するか?」と「機械学習ジョブをどう実行するか?」を同時に説明したいと思います。 やりたいこととしては、可能なかぎりコストを抑えて、でも安定した計算機クラスタを作りたい。安かろう悪かろうじゃダメってことですね。 それからスケーリ

                      分散学習にはHorovodを使う 文献から学ぶクラウド機械学習のベストプラクティス
                    • ゼロから始める Kubeflow での機械学習パイプライン構築

                      ゼロから始める Kubeflow での 機械学習パイプライン構築

                        ゼロから始める Kubeflow での機械学習パイプライン構築
                      • AI事業本部におけるGPU活用の取り組みとKubernetes - CloudNative Days Spring 2021 Online / cndo2021-ca-ml-gpuaas-aiplatform

                        AI事業本部におけるGPU活用の取り組みとKubernetes at CloudNative Days Spring 2021 Online Speaker: 青山 真也・李 榮宰・高橋 大輔 Video: https://event.cloudnativedays.jp/cndo2021/talks/451 サイバーエージェント AI事業本部では、広告領域を始めとして、様々な領域での機械学習のワークロードが増えています。研究者・データサイエンティスト・プロダクト開発者など様々なメンバーが機械学習を利用するなか、利便性の高いGPU/ML環境の提供は欠かせません。 現在に至るまでAI事業本部におけるオンプレGPU環境は様々な変遷があり、現在は2020年にリリースされた NVIDIA A100を利用しNetApp TridentとKubernetesをあわせてGPU/ML環境の提供を開始してい

                          AI事業本部におけるGPU活用の取り組みとKubernetes - CloudNative Days Spring 2021 Online / cndo2021-ca-ml-gpuaas-aiplatform
                        • Optuna on Kubeflow Pipeline 分散ハイパラチューニング

                          社内の勉強会等で発表した内容を改変したものです。 MOVの「お客様探索ナビ」にOptunaを用いたハイパーパラメータチューニングを組み込んだ経緯、実際のチューニングフロー、コードベースでの解説、実験評価について、Optunaのチュートリアルを交えつつまとめました。 タイトルに分散とありますがKFP上の話なので厳密には並列です。Read less

                            Optuna on Kubeflow Pipeline 分散ハイパラチューニング
                          • Kubeflow 1.0: Cloud Native ML for Everyone

                            Coauthors: Jeremy Lewi (Google), Josh Bottum (Arrikto), Elvira Dzhuraeva (Cisco), David Aronchick (Microsoft), Amy Unruh (Google), Animesh Singh (IBM), and Ellis Bigelow (Google). On behalf of the entire community, we are proud to announce Kubeflow 1.0, our first major release. Kubeflow was open sourced at Kubecon USA in December 2017, and during the last two years the Kubeflow Project has grown b

                              Kubeflow 1.0: Cloud Native ML for Everyone
                            • 開発スピードを止めない機械学習インフラ基盤――freeeに学ぶAI開発で本質的価値を提供する方法 | Ledge.ai

                              会計サービスをはじめ、バックオフィス向けクラウドソフトを提供するfreee。単純作業を効率化し、ユーザーが本質的な仕事に集中できる環境を提供するために、AI技術を駆使したさまざまな取り組みがなされている。 「ユーザーにとって本質的に価値があること(同社では「マジ価値」と呼ばれる)を届けきる」をコミットメントとして掲げる同社の、AI技術を使ったアプローチ方法を連載形式でお届けする。 第3回のテーマは、機械学習の開発環境。 機械学習やディープラーニングの自社開発を続けるうえで、その開発環境について考えるべき事項は多い。データ基盤の開発に始まり、分析やモデル開発、運用までスムースにこなせることに加えて、さまざまなアプリケーションやデータベースとの接続といった部分への配慮も欠かせない。 今回はfreeeの機械学習開発・研究を支えるインフラ基盤とその仕組みを同社AIラボの田中浩之氏に紹介いただく。

                                開発スピードを止めない機械学習インフラ基盤――freeeに学ぶAI開発で本質的価値を提供する方法 | Ledge.ai
                              • Polyaxon + Kubeflow を利用した効率的な継続的モデルインテグレーション / Continuous ML Model Integration with Polyaxon and Kubefolow Pipelines

                                第9回 MLOps 勉強会 Tokyo (Online): https://mlops.connpass.com/event/215133/ でトークした際の資料です

                                  Polyaxon + Kubeflow を利用した効率的な継続的モデルインテグレーション / Continuous ML Model Integration with Polyaxon and Kubefolow Pipelines
                                • Cloud AI Platform Pipelines now available in beta | Google Cloud Blog

                                  When you're just prototyping a machine learning (ML) model in a notebook, it can seem fairly straightforward. But when you need to start paying attention to the other pieces required to make a ML workflow sustainable and scalable, things become more complex. A machine learning workflow can involve many steps with dependencies on each other, from data preparation and analysis, to training, to evalu

                                    Cloud AI Platform Pipelines now available in beta | Google Cloud Blog
                                  • Kubeflow Pipelinesで快適なAI研究開発環境の整備を進めた話 - Qiita

                                    はじめに AIの発展に伴い、MLOpsに関する話題も盛んになってきています。ただ、ほとんどは本番環境用の話題で、開発環境整備についての話題が少ないように感じました。本番環境と違い、開発環境の整備はあまり重要視されてない場面も多いような気がしますが(Notebookで全部やってるなど)、研究開発環境も整ってないとすぐに深刻な状況になっていってしまうと思います。 そこで本記事では、開発環境整備の重要性と方法について書いてみようと思います。話題のKubeflow Pipelines(GCP AI-Platform Pipelines)、CloudTPU、TensorFlow等、これらの技術を使って環境構築を行なってきたのでその話をします。(互いに親和性が高く、やりたいことが十分に行えるため選定しました) 要約:現在の研究開発環境 これらの技術を使えば、簡単に以下のことができるようになります。 1

                                      Kubeflow Pipelinesで快適なAI研究開発環境の整備を進めた話 - Qiita
                                    • Evolving ML Platform with OSS Upstream Community

                                      CIU Tech Meetup #1 (https://cyberagent.connpass.com/event/283317/) で発表した資料です。

                                        Evolving ML Platform with OSS Upstream Community
                                      • Architecture for MLOps using TensorFlow Extended, Vertex AI Pipelines, and Cloud Build  |  Cloud Architecture Center  |  Google Cloud

                                        Accelerate your digital transformation Whether your business is early in its journey or well on its way to digital transformation, Google Cloud can help solve your toughest challenges.

                                          Architecture for MLOps using TensorFlow Extended, Vertex AI Pipelines, and Cloud Build  |  Cloud Architecture Center  |  Google Cloud
                                        • Amazon EKSでKubeflowを立ち上げてJupyter Notebookを触るまでの道のり -Kubeflow v1.0.1 Released-

                                          COVID-19でリモートワークが推奨されているため自宅にこもりがちです。self-isolateするだけでなくself-studyに最適な時機なのではないでしょうか。そんなわけで以前より興味のあったKubeflowをEKSのKubernetesクラスタ上に設置して簡単なJupyter Notebookを作るテストを行ってみました。KubeflowはKubernetes上で機械学習のモデル開発やエンドポイントのデプロイをサポートするオープンソースのシステムです。データサイエンスの職能領域は主にビジネス寄りとされるデータサイエンティストとエンジニア寄りの機械学習エンジニアに枝分かれして語られます。機械学習エンジニア領域ではMLOpsの興隆と共に実際に構築したモデルを運用しテストおよび改善していく必要性が以前にも増して高まってきているようです。Amazon Sagemakerのようなマネージド

                                            Amazon EKSでKubeflowを立ち上げてJupyter Notebookを触るまでの道のり -Kubeflow v1.0.1 Released-
                                          • Cloud AI Platform Pipelines のご紹介 | Google Cloud 公式ブログ

                                            ※この投稿は米国時間 2020 年 3 月 12 日に、Google Cloud blog に投稿されたものの抄訳です。 ノートブックで機械学習(ML)モデルのプロトタイプを作成している最中は、かなり簡単に思えるかもしれません。ですが、ML ワークフローを持続可能かつスケーラブルにするために必要な他の部分が気になりだすと、事態は複雑になります。機械学習のワークフローには、データの準備や分析からトレーニング、評価、デプロイなどに至るまで、相互に依存するステップが多数含まれます。こうしたプロセスをアドホックな方法(一連のノートブックやスクリプト)で構成、追跡することは難しく、監査や再現性などの問題はますます対処しづらくなります。 本日、Cloud AI Platform Pipelines のベータ版がリリースされます。Cloud AI Platform Pipelines は、堅牢で再現可能

                                              Cloud AI Platform Pipelines のご紹介 | Google Cloud 公式ブログ
                                            • Airflow vs Luigi vs Argo vs Kubeflow vs MLFlow

                                              Just tell me which one to useYou should probably use: Apache Airflow if you want the most full-featured, mature tool and you can dedicate time to learning how it works, setting it up, and maintaining it.Luigi if you need something with an easier learning curve than Airflow. It has fewer features, but it’s easier to get off the ground.Prefect if you want something that’s very familiar to Python pro

                                                Airflow vs Luigi vs Argo vs Kubeflow vs MLFlow
                                              • Building a Complete AI Based Search Engine with Elasticsearch, Kubeflow and Katib

                                                Building search systems is hard. Preparing them to work with machine learning is really hard. Developing a complete search engine framework integrated with AI is really really hard. So let’s make one. ✌️ In this post, we’ll build a search engine from scratch and discuss on how to further optimize results by adding a machine learning layer using Kubeflow and Katib. This new layer will be capable of

                                                  Building a Complete AI Based Search Engine with Elasticsearch, Kubeflow and Katib
                                                • TFXを使った機械学習パイプラインの構築(実装編その3)

                                                  連載の6回目となる今回は、前回に引き続きTFXを使ってKubeflow上で動かす機械学習パイプラインを構築していきます。 はじめに 前回は、TFXを使った機械学習パイプラインの構築のうち、「モデル学習」と「チューニング」で利用するTFXコンポーネント解説や実装を行いました。「実装編」の3回目である今回は、前回作成したモデルの検証と出力で利用するTFXコンポーネントの解説や実装を行い、モデル開発のパイプラインを完成させます。 機械学習パイプラインの構築(ハンズオン) 本稿では、機械学習パイプラインのうち「モデル作成」の最後のステップとなる「モデル検証」と「学習済みモデル」の出力について解説します。 赤枠の部分が本稿の範囲となり、黒枠の部分は実装済みであることが前提となります。前回作成したモデルを検証するステップとパイプラインの最終的な成果物となるモデルを出力する処理をパイプラインに組み込んで

                                                    TFXを使った機械学習パイプラインの構築(実装編その3)
                                                  • 機械学習の実験管理をトレンドサーチしてみた - Qiita

                                                    概要 実験管理ツールがOSSとして複数あるものの、どれが流行っているのか&学習コストに見合うだけ使えるのかの知りたく調査しました。今回はMlflow,Kubeflow,Kedro,Metaflow,ClearMLをGoogleトレンドで調査。結果、Kubeflow,Mlflowがよく検索されているようです。 調査 Googleトレンドで12ヶ月,5年,おまけで日本での12ヶ月の3つの結果を載せます。画像は執筆時点で取得したものです。 線の色の対応は次の図を参照して下さい。 12ヶ月の検索では、MlfLowとKubeflowがほぼ同立の1位。 5年ではKubeflowがやや優勢。2018年6月にMlflow 0.1.0のリリースが開始されています。Kubeflowも2018年2月ごろからv0.1の開発が進んでいます。 おまけに日本での検索結果です。Kubenetesの学習コストが大きいからか

                                                      機械学習の実験管理をトレンドサーチしてみた - Qiita
                                                    1