並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 9 件 / 9件

新着順 人気順

gpt-2の検索結果1 - 9 件 / 9件

  • GPT-3の衝撃 - ディープラーニングブログ

    この1週間はGPT-3のユースケースの広さに驚かされる毎日でした. シリコンバレーでは話題騒然ですが日本ではほとんど話題になっていないので,勢いで書くことにしました. GPT-3はOpenAIが開発した言語生成モデルです.名前の由来であるGenerative Pretrained Transformerの通り,自然言語処理で広く使われるTransformerモデルを言語生成タスクで事前学習しています. 先月申請すれば誰でもGPT-3を利用できるOpenAI APIが発表され,様々な業種の開発者によって驚くべきデモンストレーションがいくつも公開されています. 特に話し言葉からJSXやReactのコードを生成するデモは著名なベンチャーキャピタルから注目を集め,誇大広告気味だと警鐘を鳴らす事態に発展しています. This is mind blowing. With GPT-3, I built

      GPT-3の衝撃 - ディープラーニングブログ
    • ChatGPT使い方総まとめ - Qiita

      こんにちは!sakasegawaです! ( https://twitter.com/gyakuse ) 今日は今流行のChatGPTについて紹介します! ChatGPTとは OpenAIが開発するGPT-3(※)というめちゃくちゃすごい言語モデルをベースとしたチャットアプリです。 色んな質問にすぐ答えてくれます。 この記事ではさまざまな使い方を紹介します。 https://chat.openai.com/ ちなみにGPT-3関連では、noteの以下記事も便利なのでぜひ読んでみてください AIがコミットメッセージ自動生成!神ツール『auto-commit』『commit-autosuggestions』の紹介 ※正確にはGPT-3.5シリーズと呼ばれています ChatGPTの仕組みを考えながらプロンプトを作る手法はこちらに別途まとめています 文章 質問-応答 〜について教えて Wikiped

        ChatGPT使い方総まとめ - Qiita
      • GPT-1→GPT-2→GPT-3→GPT-3.5→ChatGPT→GPT-4までの進化の軌跡と違いをまとめてみた|スタビジ

        当サイト【スタビジ】の本記事では、昨今のAIの進化のきっかけになっているGPTシリーズについてまとめていきたいと思います。GPT-1から始まりGPT-2、GPT-3、そしてChatGPTであるGPT-3.5、GPT-4と進化してきました。この進化の軌跡と違いについて解説していきます。 こんにちは! データサイエンティストのウマたん(@statistics1012)です! この記事では最近のAIブームの火付け役になったGPTシリーズについて簡単にまとめていきたいと思います。

          GPT-1→GPT-2→GPT-3→GPT-3.5→ChatGPT→GPT-4までの進化の軌跡と違いをまとめてみた|スタビジ
        • AIがこの世にいない人の顔画像を大量生成する、著作権フリーの画像が10万枚! | Techable(テッカブル)

          創作AIの進化は予想以上に速く、気づけば創作物の多くをAIが担っていた…なんて状況も、信憑性を帯びてきた。クオリティの高い創作物を大量生成するAIの出現で、著作の使用料体系に崩壊が起きる可能性がある。 ヒトの書いたものと見分けがつかないような文章を生成する「GPT-2」の登場も衝撃的だったが、真っ先に市場にインパクトを与えそうなのが画像の領域だ。 Webサイト、generated.photos上に、著作権フリーのオリジナル顔画像10万枚が公開された。あらゆるシーンでハイクオリティの顔画像が利用可画像生成AIは、悪用されることでマイナスの影響もあるが、著作権フリーの画像が出回れば自身の創作の幅が広がり、恩恵を受ける方も多いだろう。同プロジェクトは、まさにこれを狙ったものだ。 GAN(敵対的生成ネットワーク)による画像生成は、ヒトやネコ、アニメキャラから賃貸物件まで、たくさんの対象で試されてい

            AIがこの世にいない人の顔画像を大量生成する、著作権フリーの画像が10万枚! | Techable(テッカブル)
          • 「虚構ニュース自動作成するソフト開発 千葉電波大」についてお詫び

            当該記事が報じた「自動で新聞記事を作成するAI」について、編集部では17年に日経新聞が発表した「完全自動決算サマリー」、19年の「GPT-2」など、その動向について把握していました。 「完全自動決算サマリー」については、虚構ニュースを生成するAIではないこと、また、「GPT−2」については、OpenAIが完全版を非公開としたため、性能を検証することができませんでした。そのため「記事を生成することはできても、本紙のような「オチ」まで理解・生成することは難しい」として、誤報ではないと判断してきました。 しかし、22年11月、OpenAIが「GPT-3」を利用した「ChatGPT」を公開。23年2月にはマイクロソフトが改良版「GPT-4」を搭載した「新しいBing(以下Bing)」を公開。これを受けて、編集部では検証委員会を立ち上げ、性能評価に取りかかりました。 評価に当たっては、Bingを使用

              「虚構ニュース自動作成するソフト開発 千葉電波大」についてお詫び
            • 文章生成AI「GPT-3」がRedditで1週間誰にも気付かれず人間と会話していたことが判明

              人工知能を研究している非営利団体OpenAIが開発した言語モデル「GPT-3」を使用して、何者かが海外掲示板のRedditに1週間近く投稿を続けていたことが分かりました。GPT-3による投稿は、最終的に開発者の手によって停止されましたが、発覚するまでの間GPT-3は誰にも気付かれることなく、Redditユーザーと言葉を交わしていたと報じられています。 kmeme: GPT-3 Bot Posed as a Human on AskReddit for a Week https://www.kmeme.com/2020/10/gpt-3-bot-went-undetected-askreddit-for.html Someone let a GPT-3 bot loose on Reddit — it didn’t end well https://thenextweb.com/neural

                文章生成AI「GPT-3」がRedditで1週間誰にも気付かれず人間と会話していたことが判明
              • GWにChatGPTについて振り返りたい人向けまとめ - まなめはうす

                今や毎日耳にするChatGPTだけれど、そもそもどんな風に話題になってきたのかをこのGWを利用して振り返りたいって人もいるはず。そんな人のためにChatGPT関連ニュースをまとめておきましたので、ぜひご利用ください! 良い振り返りで、良い人生を。 このタイトルだけでもChatGPTに食わせて、話題の流れをまとめてもらうのが一番かも? 週刊東洋経済 2023/4/22号(ChatGPT 仕事術革命) 作者:週刊東洋経済編集部東洋経済新報社Amazon 2020/06/01 あまりに高精度のテキストを作り出してしまうため「危険すぎる」と問題視された文章生成言語モデルの最新版「GPT-3」が公開 - GIGAZINE 2020/07/21 GPT-3の衝撃 - ディープラーニングブログ 2020/07/22 「GPT-3」は思ってたより「やばい」ものだった。話し言葉でプログラミングまでこなすAI

                  GWにChatGPTについて振り返りたい人向けまとめ - まなめはうす
                • 30分で完全理解するTransformerの世界

                  はじめに 初めまして。ZENKIGENデータサイエンスチームのはまなすです。正式な所属はDeNAデータ本部AI技術開発部なのですが[1]、業務委託という形で今年度から深層学習系の開発等に携わっています。 深層学習界隈では、2017年に衝撃的なタイトル(Attention Is All You Need)の論文が発表されてから早5年半、元出自の機械翻訳タスクを大きく越えて、Transformer関連の技術が様々な領域で用いられる汎用アーキテクチャとして目覚ましく発展し続けています。 今回はそんなTransformerが現時点までにどのように活用されてきたか、また、どのように工夫されてきたかをざっくりと俯瞰し、流れをおさらいする目的の記事になります。本記事の大枠は、2021年時点でのサーベイ論文である A Survey of Transformers に倣いつつ、適宜、2023年2月上旬現在ま

                    30分で完全理解するTransformerの世界
                  • GPTの仕組みをちゃんと勉強したい本 - きしだのHatena

                    やっぱGPTを仕組みから勉強したい、という本をいくつか見つけたのでまとめておきます。 まず理論的な概要。 機械学習からニューラルネットワーク、CNNでの画像処理、トランスフォーマーでの自然言語処理、音声認識・合成、そしてそれらを組み合わせたマルチモーダルと章が進むので、理論的な概観を得るのにいいと思います。 最初は数式が多いのだけど、Σをfor文だと思いつつ、定義が説明文中に埋まってるPerlよりたちが悪い記号主体言語だと思えば読めるけどめんどくさいので飛ばしても問題ないと思います。 深層学習からマルチモーダル情報処理へ (AI/データサイエンスライブラリ“基礎から応用へ” 3) 作者:中山 英樹,二反田 篤史,田村 晃裕,井上 中順,牛久 祥孝サイエンス社Amazon で、もういきなり作る。 トークナイザーから全部つくっていきます。TensorFlowでBERTをつくってGPT2をつくる

                      GPTの仕組みをちゃんと勉強したい本 - きしだのHatena
                    1