タグ

関連タグで絞り込む (2)

タグの絞り込みを解除

Algorithmに関するraomitoのブックマーク (21)

  • フィボナッチ数列に関する3つのアルゴリズムの速度比較@Ruby - 簡潔なQ

    アルゴリズムの違いが速度に明確に表れるわかりやすい例のひとつであるフィボナッチ数列を使って速度比較。 気軽に多倍長が使える言語でないと、線形とlogの違いは見えづらい。 #!/usr/bin/ruby -Ku require 'matrix' def fib_recursive(n) case n when 0 return 0 when 1 return 1 else return fib_recursive(n-1)+fib_recursive(n-2) end end def fib_linear(n) a, b = 0, 1 n.times do a, b = b, a+b end return a end def fib_log(n) (Matrix[[1,1],[1,0]]**n)[0,1] end def omit_bignum(n, dig = 20) s = n.to_s

    フィボナッチ数列に関する3つのアルゴリズムの速度比較@Ruby - 簡潔なQ
  • ITエンジニアなら知っておきたい、今更聞けないアルゴリズムの種類一覧 - paiza times

    Photo by Oferico 皆さんはアルゴリズムやデータ構造について勉強したことはありますか?そして、基的なアルゴリズムについて、どのようなものがあって、どのようなときに使うとよいかといったことを説明することができますか? 仕事をしていると、プログラミング言語等の勉強や業務に忙しくて、正直アルゴリズムどころではないという場合がほとんどでしょう。しかし、いつか勉強しようと思っていたけど、基的なアルゴリズムにどんなものがあるのかなんて今更聞けないな……ということもあるかと思います。 今回はそんな方に向けて、基的なアルゴリズムの一部の概要に加え、アルゴリズムの勉強に役立つサイト、書籍をご紹介したいと思います。 ■アルゴリズムを学ぶ意味 例えば、ソート等については、通常はすでにソート関数があるので、自分で作らなくても済む=アルゴリズムも勉強しなくていいと思ってしまうかもしれません。しか

    ITエンジニアなら知っておきたい、今更聞けないアルゴリズムの種類一覧 - paiza times
  • Pythonで基本のアルゴリズムを書いてみた - Something Beyond

    2015-01-05 Pythonで基のアルゴリズムを書いてみた Programming アルゴリズムを学ぶ意義みたいなものはいろいろなところで語り尽くされていると思うので私からは特にコメントしませんが、今回の勉強に利用した書籍でも引用されていた言葉が印象的なので、記しておきます。 最先端の機械を使って製品をつくるのは簡単で、しかも楽なことだが、基技術を固める前に楽なほうに流れていってしまった。俺のような基的なことがきちんとできるローテクが、今、我が世の春を謳歌しているんだ。 岡野雅行さんという職人さんの言葉のようです。そういえば随分前にこんな記事が盛り上がりました。 今すぐ辞めて欲しい、「Ruby on Rails勉強してます」「CakePHP勉強してます」 最新技術だけではなくて、その基礎となる技術をしっかり理解しなければダメだよということでしょう。ということで基のアルゴリ

    Pythonで基本のアルゴリズムを書いてみた - Something Beyond
  • 初心者でもアルゴリズムの学習ができる入門本とサイト一覧 - paiza times

    Photo by VFS Digital Design 皆さんはアルゴリズムやデータ構造について知っているでしょうか。情報系の学部出身の人は学校の授業でやったかもしれません。一方で学校で情報系の勉強をせずにITエンジニアになったという方は、アルゴリズムやデータ構造について一度は「勉強したほうが良いんだろうな」と思いつつも、実際の業務であんまり必要なさそうだし、難しそうだし、DevOpsやオブジェクト指向やフレームワークについて学ぶので手一杯で未着手、という人も多いのではないでしょうか。 今回はそんな方に向けて、アルゴリズム、データ構造を学ぶ意義と、それらを学ぶときに役立つとサイトについてまとめました。 ■アルゴリズム、データ構造を学ぶ意味 アルゴリズムやデータ構造について語られるときに、非常に良く言われる事として「そんなものは実務に役立たたないので必要ない」という意見があります。当にア

    初心者でもアルゴリズムの学習ができる入門本とサイト一覧 - paiza times
  • プログラミングコンテストで、C++を使って全ての問題を解くのに必要なアルゴリズムは何ですか? | POSTD

    これが私の提案するリストです。必要とされるアルゴリズムや概念のほとんどが挙げられています。いくつかの要素はアルゴリズムではなかったり(フェイクや状態、関心事など)、重複していたりもします。 最後に1つ、アドバイスを。 知識を蓄える前に、まずは思考能力を鍛えることを重要視しましょう。これはコンテストのみならず、あなた自身の将来にも役立ちます。思考能力を鍛えるには、アルゴリズムではなく純粋な思考を必要とする、アドホックを使いこなせるようになりましょう。 topcoderのDiv2とCodeforcesのDiv2の2つに集中することも効果的だと思います。どちらも、低いレベルから問題に取り組んでいきましょう。例えば、Div2-250をマスターしてからDiv2-500に取り組む、などです。

    プログラミングコンテストで、C++を使って全ての問題を解くのに必要なアルゴリズムは何ですか? | POSTD
  • VisuAlgo moves to https://visualgo.net/en

    Redirecting you to https://visualgo.net/en

  • バブルソートよりも非効率なソートアルゴリズムを探して ―― ストゥージソートとスローソート - Line 1: Error: Invalid Blog('by Esehara' )

    はじめに 恐らく、プログラマの中で配列内の要素を整列させたりするソートにお世話にならなかった人、というのは余り考えられないのではないでしょうか。しかし、とはいえ、大抵はソートを自前で実装せず、組み込み関数であったり、あるいは何らかのライブラリで済ませることが殆どだと思う。 車輪の再発明というよりも、バグとか、自分が考慮していなかった挙動などを避けるために、自前でソートを組むことは余りないのですが、とはいえ、自分なりにソートを実装して見ると、それがどういう特徴を持ったソートであるか、というのがわかりますし、また、ソートというのはいったいどういう操作で実現されるのかという洞察が深まってくるなあ、という実感があったりする。 なので、今回はあるソート二つについての話を書くのが趣旨です。 最高のアルゴリズムはある、だが最悪のアルゴリズムは何か 一口にソートといったところで、ソート自体にも銀の弾丸があ

    バブルソートよりも非効率なソートアルゴリズムを探して ―― ストゥージソートとスローソート - Line 1: Error: Invalid Blog('by Esehara' )
  • 動的計画法が苦手な人が、動的計画法が超苦手な人へアドバイスしてみる - じじいのプログラミング

    この記事は、Competitive Programming Advent Calendar Div2013(http://partake.in/events/3a3bb090-1390-4b2a-b38b-4273bea4cc83)の8日目の記事です。 動的計画法(Dynamic Programming, DP)についての記事です。 12/9 前編にサンプルプログラム(http://ideone.com/2B7f4v)を追加しました 12/11 前編の図2つを差し替えました。 はじめに まずは、やネットの資料で、動的計画法についてのすばらしい解説はいろいろありますので、まずはそれらを参考に。 プログラミングコンテストでの動的計画法 http://www.slideshare.net/iwiwi/ss-3578511 最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メ

    動的計画法が苦手な人が、動的計画法が超苦手な人へアドバイスしてみる - じじいのプログラミング
  • Math - おまいら素因数分解どうしてますか? : 404 Blog Not Found

    2013年02月15日13:00 カテゴリMathLightweight Languages Math - おまいら素因数分解どうしてますか? 数学ガール/乱択アルゴリズム 結城浩 みなさんは素因数分解の必要にせまられたとき、どうしてますか? たとえば、こんなとき。 挑戦者求む!【アルゴリズム】チョコの量を減らせ! by The Essence of Programming 結城 浩│CodeIQ 与えられた個数の立方体を組み上げて、できるだけ表面積の小さな直方体を作りましょうまあ小学生で習うぐらいですし、都度書き下ろしても大した事なさそうにも思えます。 /* works reliably only for 32-bit integer */ var primes = (function(sqrtmax) { var result = [2]; loop: for (var n = 3;

  • 素因数分解の暗算高速化 - Elliptium

    誰の役に立つのか, 何の役に立つのか良く分からないが, 中学生くらいのときから数字を見るたびに素因数分解に挑んできた俺が使っている, 暗算で素因数分解をする方法を紹介します. 方針 簡単に計算できるように, 1桁の掛け算と2桁の足し算くらいしか使わないことにします. 11で割る まず, 一番簡単な11から. 11 = 10 + 1 を利用して, 11の倍数をどんどん引いていきます. 残りが0になったら11の倍数, そうでなかったら11の倍数でない, と分かります. 具体例 135 から始めます. 135 を 13 と 5 に分解. 13 - 5 を計算して 8. 11 で割れないので終了. 簡単ですね. 7で割る 7 * 3 = 21 を利用します. 具体例 1113 から始めます. 1113 を 111 と 3 に分解. 111 - 3 * 2 = 105. 105 を 10 と 5 に

  • コンピュータを進化させてきた偉大なるアルゴリズムまとめ

    By Kai Schreiber IT技術の進化のスピードには目を見張るものがありますが、それを支えているのはアルゴリズムと呼ばれる処理方法(技術的アイデア)です。さまざまなアルゴリズムの中でも、コンピュータの進化に革命的な影響をもたらしたとされる偉大なアルゴリズムは以下の通りです。 Great Algorithms that Revolutionized Computing http://en.docsity.com/news/interesting-facts/great-algorithms-revolutionized-computing/ ◆ハフマン符号(圧縮アルゴリズム) Huffman coding(ハフマン符号)は、1951年にデービッド・ハフマン氏によって開発されたアルゴリズム。頻出頻度の大小によって対戦するトーナメントツリーを考えて、ブロックごとに0と1の符号をもたせる

    コンピュータを進化させてきた偉大なるアルゴリズムまとめ
  • ランダウの記号 - Wikipedia

    スターリングの公式はランダウの記号を用いてと書くこともできる。 ランダウの記号(ランダウのきごう、英: Landau symbol)は、主に関数の極限における漸近的な挙動を比較するときに用いられる記法である。 ランダウの漸近記法 (asymptotic notation)、ランダウ記法 (Landau notation) あるいは主要な記号として O (数字の0ではない)を用いることから(バッハマン-ランダウの)O-記法 (Bachmann-Landau O-notation[1])、ランダウのオミクロンなどともいう。 記号 O はドイツ語のOrdnungの頭字にちなむ[2]。 なおここでいうランダウはエトムント・ランダウの事であり、『理論物理学教程』の著者であるレフ・ランダウとは別人である。 ランダウの記号は数学や計算機科学をはじめとした様々な分野で用いられる。 ランダウの記号 は 、x

    ランダウの記号 - Wikipedia
  • アルゴリズムと計算量

    金庫破りと計算量膨張 n 桁の番号をもつ暗証ロックがあるとします。 2 桁であれば 00 〜 99 の 100 個の正解があるわけで、 0 番から順に入力していく解き方では、 最悪の場合は 100 手目に開きます。 99 が正解とは限らないので、平均的にはこれより早く解き終わります。 0 であるときの確率は 1/100 で、このときの手数は 1 手です。 1 であるときの確率は 1/100 で、このときの手数は 2 手です。 2 であるときの確率は 1/100 で、このときの手数は 3 手です。 3 であるときの確率は 1/100 で、このときの手数は 4 手です。 : 99 であるときの確率は 1/100 で、このときの手数は 100 手です。 つまり、平均手数は により、100 手目の約半分です。 ここでいう解き方をアルゴリズムといい、 問題を解くための手数 (てかず) のことを計算

  • サービス終了のお知らせ

    サービス終了のお知らせ いつもYahoo! JAPANのサービスをご利用いただき誠にありがとうございます。 お客様がアクセスされたサービスは日までにサービスを終了いたしました。 今後ともYahoo! JAPANのサービスをご愛顧くださいますよう、よろしくお願いいたします。

  • オーダーについて知っておくべき5つのこと - わさっきhb

    研究室のゼミ発表で,「オーダーのことはよく分かっていませんが…」という前置きで計算量の見積もりをしているものを,昨年,今年と見かけました. この日記が役に立つか,余計な御世話になるか分かっていませんが,ここに整理を試みてみました. 1. ビッグ・オー記法 「アルゴリズムの計算量をオーダーで表してみなさい」と指示されたときのオーダーは, 注文,発注という意味でもなく, 順番*1,順序,秩序という意味でもなく, 「百万のオーダー」*2というような使い方でもなく, 数学の位数という意味でもなく, ビッグ・オー記法,あるいはwikipedia:ランダウの記号を用いて表すものを言います. 2. 一番次数の高いもの以外,それと係数は無視 ビッグ・オー記法では,基的に,一つの文字に関するできるだけ簡単な数式に,「O( )」をかぶせます.このとき, 複数の項の足し算なら,次数の最も高いものだけを残し,他

    オーダーについて知っておくべき5つのこと - わさっきhb
  • AVL木で木構造を学ぼう (1/2)- @IT

    第3回 AVL木で木構造を学ぼう はやしつとむ アナハイムテクノロジー株式会社 2009/4/13 オブジェクト指向によって、アルゴリズムは隠ぺいされていることが多くなった。しかし、「用意されていない処理」が求められたときに対応できるだろうか(編集部) 第2回「単純なキューと循環キュー」では、循環キュー構造を実装したCyclicQueueの解説と、TListやLinkedListを利用したキューについての比較を行いました。 今回は、木構造を取り上げます。引き続き筆者はDelphi 2009でサンプルプログラムを作成していますが、Delphiをお持ちでない方は下記のURLからTurboDelphiをダウンロードしてぜひインストールして見て下さい。 木構造とは何か? 木構造は、データの関係を根(ROOT)から複数の枝(EDGE)をたどって節点(NODE)を経由しながら葉(LEAF)へと至るよう

  • 「フカシギの数え方」の問題を解いてみた

    先日、「『フカシギの数え方』 おねえさんといっしょ! みんなで数えてみよう!」という動画を見た。格子状のマスの左上から右下までの経路が何通りあるのかを調べて、格子が多くなればなるほど組み合わせの数が爆発的に増えることを教えてくれる動画だ。これは自己回避歩行(Self-avoiding walk)と呼ばれている問題らしい。 これだけ聞いてもそれほどインパクトはないのだが、動画に出てくるおねえさんの経路を調べあげる執念がもの凄く、ネット上でも結構な話題になっている。執念と言うよりも狂気に近い。しかし、話題になった割には動画内で言及されている高速なアルゴリズムを実装したという話を聞かなかったので、自分で確かめることにした。 動画のおねえさんは深さ優先探索によるプログラムを使っていると思われるが、それだとスパコンを使っても10×10マスの格子を解くのに25万年も掛かってしまう。そこで、高速化のため

    「フカシギの数え方」の問題を解いてみた
  • 最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ

    動的計画法とメモ化再帰 今回は、非常によく用いられるアルゴリズムである、「動的計画法」「メモ化再帰」について説明します。この2つはセットで覚えて、両方使えるようにしておくと便利です。 なお、メモ化再帰に関しては、第5・6回の連載の知識を踏まえた上で読んでいただけると、理解が深まります。まだお読みになっていない方は、この機会にぜひご覧ください。 中学受験などを経験された方であれば、こういった問題を一度は解いたことがあるのではないでしょうか。小学校の知識までで解こうとすれば、少し時間は掛かるかもしれませんが、それでもこれが解けないという方は少ないだろうと思います。 この問題をプログラムで解こうとすると、さまざまな解法が存在します。解き方によって計算時間や有効範囲が大きく変化しますので、それぞれのパターンについて考えます。 以下の説明では、縦h、横wとして表記し、プログラムの実行時間に関しては、

    最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ
  • 知れば天国、知らねば地獄――「探索」虎の巻

    いよいよ今回から、具体的なアルゴリズムの紹介に入っていきます。今回は、プログラミングにおける重要な概念である「探索」について考えます。グラフに変換し、探索する、という流れを知るとともに、そのグラフを効率よく探索する方法について紹介します。 今後紹介していくアルゴリズムについて お待たせしました! 「最強最速アルゴリズマー養成講座」という連載タイトルのとおり、今回の連載からいよいよ具体的なアルゴリズムの紹介に入っていきたいと思います。 しかし、それを読んでいただく前に、1つ注意してもらいたいことがあります。連載第3回でもお伝えしたように、「問題を、既存の適当なアルゴリズムに当てはめる」という考え方は、非常に危険である、ということです。 筆者の経験上、TopCoderでRedCoder以上を目指すのであれば、回答時間短縮のために、いままでのパターンを利用するのも方法の1つなのですが、連載では

    知れば天国、知らねば地獄――「探索」虎の巻
  • 探索 - Wikipedia

    探索(たんさく、英: search)とは、特定の制約条件を満たす物を見つけ出す行動のこと。 何か問題を解くに当たって、有効な解析的な解法を用いることのできない場合は、試行錯誤によって解を得る場合もある。 一部のアルゴリズムは、元々、機械学習と並んで人工知能の分野のアルゴリズムであるが、現在はその他の分野にも応用されている。類義語として検索(英: search)も参照。 探索アルゴリズムとは、大まかに言えば、問題を入力として、考えられるいくつもの解を評価した後、解を返すアルゴリズムである。 まず解くべき問題を状態(英: state)と状態変化(行動、英: action)に分ける。 最初に与えられる状態を初期状態(英: initial state)といい、目的とする状態は最終状態(ゴール、英: final state, goal)と呼ばれる。 初期状態から最終状態に至る、状態及び状態変化の並び