並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 82件

新着順 人気順

python random range for floatの検索結果1 - 40 件 / 82件

  • 退屈なことはPythonにやらせよう 第2版

    一歩先行くハイパフォーマンスなビジネスパーソンからの圧倒的な支持を獲得し、自作RPA本の草分けとして大ヒットしたベストセラー書の改訂版。劇的な「業務効率化」「コスト削減」「生産性向上」を達成するには、単純な繰り返し作業の自動化は必須です。本書ではWordやExcel、PDF文書の一括処理、Webサイトからのダウンロード、メールやSMSの送受信、画像処理、GUI操作といった日常業務でよく直面する面倒で退屈な作業を、Pythonと豊富なモジュールを使って自動化します。今回の改訂では、GmailやGoogleスプレッドシートの操作、Pythonと各種モジュールの最新版への対応、演習等を増補しています。日本語版では、PyInstallerによるEXEファイルの作成方法を巻末付録として収録しました。 関連ファイル サンプルコード 正誤表 書籍発行後に気づいた誤植や更新された情報を掲載しています。お手

      退屈なことはPythonにやらせよう 第2版
    • 関数名、メソッド名、変数名でよく使う英単語のまとめ

      プログラミングをしていると関数名、メソッド名、変数名をどうするか悩みます。 ロジックより命名に時間を費やすこともざらにあります。翻訳したり、一般的な命名規則なのかいつも検索して大変です。 よく使うサイトの内容をコピってメモしておく 関数名とメソッド名の違いについて よく使う英単語のまえに、いつもごっちゃにして使っているけど、定義はこんな感じ 「関数」と「メソッド」の違い 似ているところ どちらも何か(引数)を入れると処理をして何か(戻り値)を返してくれます。 違うところ やってること自体は大差ありません。概念としては違います。 メソッドはオブジェクト指向で登場する用語で、オブジェクトの動作を定義したものです。 まずオブジェクトありきなのですね。一方の関数は、オブジェクト云々は関係ありません。 個人的な使い分け Java で登場する関数は「メソッド」です。C 言語で登場する関数は「関数」と呼

        関数名、メソッド名、変数名でよく使う英単語のまとめ
      • プロと読み解く Ruby 3.1 NEWS - クックパッド開発者ブログ

        技術部の笹田(ko1)と遠藤(mame)です。クックパッドで Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、ついに Ruby 3.1.0 がリリースされました(Ruby 3.1.0 リリース )。今年も Ruby 3.1 の NEWS.md ファイルの解説をします。NEWS ファイルとは何か、は以前の記事を見てください。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者ブログ プロと読み解くRuby 2.7 NEWS - クックパッド開発者ブログ プロと読み解くRuby 3.0 NEWS - クックパッド開発者ブログ 本記事は新機能を解説することもさることながら、変更が入った背景や苦労な

          プロと読み解く Ruby 3.1 NEWS - クックパッド開発者ブログ
        • 遅くないpandasの書き方 - ML_BearのKaggleな日常

          これは何? この記事は Kaggle Advent Calendar 2021 の7日目の記事です。 pandasはデータ分析ライブラリとして非常に便利ですが、書き方を間違えると簡単に処理が遅くなってしまうという欠点があります。そこで、この記事では遅くならない書き方をするために気をつけたいポイントをいくつかご紹介したいと思います。 この Colab Notebookの実行結果をエクスポートした上で、不要な部分を一部削って記事にしています。colab notebook をコピーして実行してもらえれば再現することが可能なはずです。(colabにコメント等をいただいても返すことはできないと思います、すみません。) 前提条件 この記事ではあくまで「遅くない(なりづらい)書き方を紹介する」ことに努めます。よって、以下のような改善点はあるが一旦考慮の外におくものとして話を進めます。 並列化ライブラリ

            遅くないpandasの書き方 - ML_BearのKaggleな日常
          • GPT-5 の新パラメータとツール|npaka

            以下の記事が面白かったので、簡単にまとめました。 ・GPT-5 New Params and Tools - OpenAI Cookbook 1. verbosity1-1. 概要「verbosity」は、出力トークン数を調節できます。 ・low : 簡潔なUX、簡潔な文章 ・medium (デフォルト) : バランスの取れた詳細 ・high : 詳細な情報。監査、教育、引き継ぎに最適 1-2. verbosityの効果の確認プロンプトを一定に保ったまま、「verbosity」を変更することで、効果を確認できます。 response = client.responses.create( model="gpt-5", input="人生、宇宙、そして万物に関する究極の問いに対する答えは何でしょうか?", text={ "verbosity": "low" } ) print(response

              GPT-5 の新パラメータとツール|npaka
            • GPT in 60 Lines of NumPy | Jay Mody

              January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

              • BlenderとPythonとUnityで巨大な立体迷路を作成する - Qiita

                このようなゲームを作りました。基本的には迷路のゲームです。 サイトのリンク 本記事ではこのゲームの製作過程を掲載すると共に、きっと有益にな情報をまとめます。楽しんで頂けたら幸いです。 Step0 前提 まず用語を整理します。 Blender : 3DCG制作ソフト。Pythonによって操作が可能になっています。 Python : 言わずと知れた有名プログラミング言語。 Unity : ゲーム制作ソフト。スタート画面の表示やゲームオーバーの判定などをしてくれます。言語はC#です。 大まかな流れとしては、 Step1. Blenderで3Dオブジェクトを作成 Step2. Pythonでそれを迷路に組み立てる Step3. Unityでゲームとして完成させる という風になっています。 コードに関しては、読みやすさも考え記事中においては一部抜粋に留めています。もし全体のコードを知りたい場合はプル

                  BlenderとPythonとUnityで巨大な立体迷路を作成する - Qiita
                • Python FastAPIで構築する実用的データ統合パイプライン: 天気・交通APIを例にしたジェネレータ活用術 - Qiita

                  はじめに こんにちは、皆さん。今回は、FastAPIを使用して天気予報APIと交通情報APIを作成し、それらから取得したデータを効率的に統合する方法について、Pythonのジェネレータを使用したアプローチを紹介します。この例を通じて、複数のデータソースを組み合わせることで、日常生活の計画をより効率的に立てる方法を学びましょう。 目次 はじめに 環境準備 FastAPIを使用した天気・交通APIの作成 ジェネレータを使用したデータ統合 動作確認と日常生活への応用 パフォーマンスと拡張性 まとめ はじめに 日々の生活において、天気予報や交通情報は私たちの行動計画に大きな影響を与えます。本記事では、これらの情報を提供する2つのAPIを作成し、それらからのデータを効率的に統合して活用する方法を紹介します。 環境準備 まず、必要なライブラリをインストールします: from fastapi impor

                    Python FastAPIで構築する実用的データ統合パイプライン: 天気・交通APIを例にしたジェネレータ活用術 - Qiita
                  • 近傍探索ライブラリ「Annoy」のコード詳解 - ZOZO TECH BLOG

                    はじめまして、ZOZO研究所福岡の家富です。画像検索システムのインフラ、機械学習まわりを担当しています。 今回は画像検索システムでお世話になっているAnnoyについてじっくり紹介したいと思います。 目次 目次 Annoyについて 近傍探索について Annoyのソースコードを読むときのポイント AnnoyIndexというクラスのインスタンスを作る インストール過程について PythonのC/C++拡張 Annoyの実装 1. add_item 2. build 3. get_nns_by_vector 4. build再考 他に問題となる点について CPU依存部分 ディスクかメモリか まとめ さいごに Annoyについて Annoyは、SpotifyによるPython近傍探索ライブラリです。 github.com 弊社のテックブログでも以前に取り上げています。 techblog.zozo.c

                      近傍探索ライブラリ「Annoy」のコード詳解 - ZOZO TECH BLOG
                    • 今更ながらVAEってこんなに凄かったの?ってなった話

                      はじめに VAE、変分オートエンコーダのVAEです。機械学習のネットワークの一つです。 これを読まれている方は、VAEについて多少以上は御存じであるという前提でお話します。 VAEとは、端的に言えば特徴を潜在変数を介した表現に起き換える手法です。 潜在変数というのは、正体不明だがその入力を決定づける何らかの変数、といった感じに理解していればOKだと思います。 表に顕在していない、その入力を決定づける何かを、まず0まわりの値を取る自然な乱数的なサムシングとして仮定し、オートエンコーダで絞ったときの最低限の特徴がその0まわりの乱数的なサムシングのみで成り立つように設計するということです。 これ以上の詳しい説明は他に譲ります。参考としてはこちらが有名かと。 Variational Autoencoder徹底解説 VAEがこんなことできるって知ってた? ところでこの画像、何かわかりますか。 実はこ

                        今更ながらVAEってこんなに凄かったの?ってなった話
                      • イチからつくるLLM(1)|ディープラーニングネイティブ

                        LLMのことを知りたいと思ってチュートリアルなどを眺めても結局transformersのAPI紹介で何も分からない。そこで「分からないなら作ればいいじゃない」、というファインマン流な勉強を始めてみました。ゼロから作ろうかと思ったのですが、ちょっと大変そうなので、このシリーズではJAXとequinoxで実装していきます。JAXは自動微分やJIT機能のついたnumpyですが、流石にそのレベルから頑張るのはしんどいので、JAXでニューラルネットワークなどを作りやすくするライブラリーであるequinoxを使います。flaxなどより薄いラッパーで、扱いやすいのが特徴です。 Llama3モデルを色々用意するのは大変なので、今回はLlama3に限定します。LlamaはMetaの開発しているLLMで、同じ構造はSarashinaやLLM-jpといった日本語LLMにも採用されているようです。私が使ったことの

                          イチからつくるLLM(1)|ディープラーニングネイティブ
                        • 缶つぶし機とソフトウェア移行技術 - Refactoring to Rust の読書感想文 - じゃあ、おうちで学べる

                          はじめに ——あるいは、「知っている」と「理解している」の間 Rustのことは、知っていた。学習もしていた。実務でも使っていた。 でも、それは知っているつもりだった。 知ってるつもり 無知の科学 (ハヤカワ文庫NF) 作者:スティーブン スローマン,フィリップ ファーンバック早川書房Amazon 日々Rustで開発し、BoxとRcとArcを使い分け、tokio::spawnでタスクを生成し、?演算子を当たり前のように書いている。FFI?PyO3使えばいいでしょ。WebAssembly?wasm-bindgenがあるじゃない。技術的には、確かに「使える」レベルにはあった。 でも、心のどこかで感じていた違和感があった。 オートバイのエンジンを分解できる人と、エンジンが動く原理を理解している人は違う。コードが動くことと、なぜそう書くべきかを理解することも違う。私は前者だった。メカニックではあった

                            缶つぶし機とソフトウェア移行技術 - Refactoring to Rust の読書感想文 - じゃあ、おうちで学べる
                          • Python Pandasを使った時系列データの移動平均計算: 実装と分析技法 - Qiita

                            はじめに 時系列データの分析は、ビジネス、金融、科学研究など、様々な分野で重要な役割を果たしています。その中でも、移動平均は最も基本的かつ強力なツールの一つです。この記事では、Pandasを使用した移動平均の計算と可視化について、基礎から応用まで幅広く解説します。 この記事を読むメリット 実践的なデータ分析スキルの向上: 単純な移動平均から適応型移動平均まで、様々な手法の実装方法を学べます。これらのスキルは、株価予測、需要予測、センサーデータの分析など、実務で即座に活用できます。 効率的なコード設計とパフォーマンス最適化: 大規模データセットの処理技術や、再利用性の高いコード設計について学べます。これにより、より効率的で保守性の高い分析プログラムを作成できるようになります。 分析手法と可視化技術の習得: 移動平均の交差シグナルやボリンジャーバンドなど、分析手法と、それらを効果的に可視化する

                              Python Pandasを使った時系列データの移動平均計算: 実装と分析技法 - Qiita
                            • Gamedev in Lisp. Part 1: ECS and Metalinguistic Abstraction - cl-fast-ecs by Andrew

                              Gamedev in Lisp. Part 1: ECS and Metalinguistic Abstraction In this series of tutorials, we will delve into creating simple 2D games in Common Lisp. The result of the first part will be a development environment setup and a basic simulation displaying a 2D scene with a large number of physical objects. It is assumed that the reader is familiar with some high-level programming language, has a gener

                                Gamedev in Lisp. Part 1: ECS and Metalinguistic Abstraction - cl-fast-ecs by Andrew
                              • optunaの理論 - tomtom58’s blog

                                はじめに 従来のフレームワークにおける課題 Optunaの設計思想 optunaの理論 Define-by-run APIの理論と実装 サンプリングアルゴリズムの理論 効率的な枝刈り(Pruning)メカニズム 分散最適化の理論とアーキテクチャ ストレージバックエンド トライアルの同期と非同期実行 実際のユースケースと性能評価 ベンチマーク評価の理論的枠組み TPEとCMA-ESの組み合わせによる性能向上 実世界での応用例 システムの拡張性と実装の詳細 カスタムサンプラーの実装 カスタム枝刈り手法の実装 実装上の最適化とパフォーマンスチューニング データベースアクセスの最適化 メモリ使用量の最適化 並列処理の効率化 ハイパーパラメータ探索の最適化 実践的な使用方法とベストプラクティス 探索空間の設計 目的関数の設計 計算リソースの最適配分 実装例 高度な機能とカスタマイズ マルチ目的最適化

                                  optunaの理論 - tomtom58’s blog
                                • Accumulated Local Effects(ALE)で機械学習モデルを解釈する - Dropout

                                  はじめに Partial Dependence 特徴量が独立の場合 数式による確認 PDの実装 特徴量が相関する場合 PDがうまく機能しない原因 Marginal Plot Marginal Plotの数式 Marginal Plotのアルゴリズム Maginal Plotの実装 Accumulated Local Effects ALEのアイデア ALEはうまく機能するのか ALEのアルゴリズム ALEの実装 ALEの数式 まとめ Appendix:線形回帰モデルの場合 参考文献 この記事をベースにした発表資料です! speakerdeck.com はじめに Random Forestやディープラーニングなどのブラックボックスモデルは、予測性能が高い一方で解釈性が低いというトレードオフを抱えています。 これを克服するために、ブラックボックスモデルに後から解釈性を与える「機械学習の解釈手法

                                    Accumulated Local Effects(ALE)で機械学習モデルを解釈する - Dropout
                                  • wav2vec 2.0 を使って 手軽に音声認識モデルを触れるようになろう - NTT docomo Business Engineers' Blog

                                    この記事は NTTコミュニケーションズ Advent Calendar 2021 の20日目の記事です。 はじめに こんにちは。プラットフォームサービス本部アプリケーションサービス部の是松です。 NTTコミュニケーションズでは自然言語処理、機械翻訳、音声認識・合成、要約、映像解析などのAI関連技術を活用した法人向けサービスを提供しています。(COTOHA シリーズ) NTTコミュニケーションズがこのようなAI関連技術を活用したサービスを展開する強みとして、 NTT研究所の研究成果が利用可能であること 自社の他サービスを利用しているお客様に対してシナジーのあるサービスを提案できること この2点が挙げられると思います。 実際に、私が担当している COTOHA Voice Insight は 通話音声テキスト化によってコンタクトセンターの業務効率化・高度化を実現するサービスなのですが、 NTT研

                                      wav2vec 2.0 を使って 手軽に音声認識モデルを触れるようになろう - NTT docomo Business Engineers' Blog
                                    • Modular: Mojo🔥 - It’s finally here!

                                      Since our launch of the Mojo programming language on May 2nd, more than 120K+ developers have signed up to use the Mojo Playground and 19K+ developers actively discuss Mojo on Discord and GitHub. Today, we’re excited to announce the next big step in Mojo’s evolution: Mojo is now available for local download – beginning with Linux systems, and adding Mac and Windows in coming releases. While the Mo

                                        Modular: Mojo🔥 - It’s finally here!
                                      • ユーザー投稿型ドキュメントのタイトル多様性を考慮した検索リランキングを試す - エムスリーテックブログ

                                        エムスリーエンジニアリンググループ AI・機械学習チームでソフトウェアエンジニアをしている中村(po3rin) です。好きな言語はGo。情報検索系の話が好物です。今回は多様性を考慮したリランキング手法と実際にPythonで実装を試した話をします。 課題 検索結果のリランキング リランキング実装 アーキテクチャ 前準備 TF-IDF vector Jaccard係数 本実装の課題 まとめ We're hiring !!! Reference 課題 エムスリーのAskDoctorsというサービスではユーザーがお医者さんに直接質問ができるサービスです。質問できる以外にも、ユーザーは自分の症状や悩みに近い質問を検索できます。 www.askdoctors.jp Askdoctorsの検索の問題点として、同じようなタイトルが並んでしまうという問題があります。ユーザーの投稿ドキュメントのタイトルには「

                                          ユーザー投稿型ドキュメントのタイトル多様性を考慮した検索リランキングを試す - エムスリーテックブログ
                                        • A perceptual color space for image processing

                                          From personal project to industry standard Introduction added in 2025 When introduced Oklab in 2020, I never expected it to reach as far as it has. In a few years Oklab has, among other things, found its way into: Photoshop – Now the default interpolation method for gradients Web browsers – Part of CSS Color Level 4 and 5, supported by major browsers Game engines – Used in Unity’s gradients and Go

                                          • ダブルエリミネーション方式のトーナメント大会は、どの程度適切な順位付けができるか - YONの土鳩ブログ

                                            この記事では、トーナメント大会を行う形式の一つである「ダブルエリミネーション方式」(ダブルイリミネーションとも)が、通常のトーナメント方式に比べて、どの程度適切な順位付けをできるかについて書く。 なお、この記事は寝椅子氏の企画であるスマブラAdventCalendar2020に参加している。リンク先の他のブログ記事も是非読んでみてほしい。また、リーグ戦については以下の過去記事で考察している。 ダブルエリミネーションはシングルエリミネーションの問題を緩和する ダブルエリミネーションによる順位付けを数理的に評価する 大会をシミュレーションし、大会形式の影響を調べる 総評 【追記おまけ】組合せ運だけを評価できないか? ダブルエリミネーションは シングルエリミネーションの問題を緩和する 多くの競技で採用されている普通のトーナメント戦は、1敗した時点で順位が確定する。この形式をシングルエリミネーショ

                                              ダブルエリミネーション方式のトーナメント大会は、どの程度適切な順位付けができるか - YONの土鳩ブログ
                                            • python_modules.pdf

                                              Python3 OpenCV / Pillow / pygame / Eel / PyDub / NumPy / matplotlib / SciPy / SymPy / gmpy2 / hashlib, passlib / Cython / Numba / ctypes / PyInstaller / curses / tqdm / JupyterLab / json / psutil / urllib / zenhan / jaconv Copyright © 2017-2025, Katsunori Nakamura 2025 8 19 Python ‘ .py’ Python Python Windows PSF Python py .py Enter macOS Linux PSF Python python3 .py Enter Anaconda Prompt Python p

                                              • A simple search engine from scratch*

                                                *if you include word2vec. Chris and I spent a couple hours the other day creating a search engine for my blog from “scratch”. Mostly he walked me through it because I only vaguely knew what word2vec was before this experiment. The search engine we made is built on word embeddings. This refers to some function that takes a word and maps it onto N-dimensional space (in this case, N=300) where each d

                                                • はじめての自然言語処理 Fusion-In-Decoder でクイズに答えるモデルを作る | オブジェクトの広場

                                                  今回は Fusion-In-Decoder を使ってクイズに答えるモデルを作ります。以前から Wikipedia 等の外部情報を参照できるテキスト生成モデルを試してみたいと思っていました。Fusion-In-Decoder の発表は 2020 年なので少し前のモデルですが、T5 ベースで手軽に試せるサイズ感ですので、日本語で試してみましょう。 1. はじめに 今回紹介する Fusion-In-Decoder(以下、FiD )1 は Meta AI (当時は Facebook AI Research) が発表した Open Domain question Answering タスクを解くテキスト生成モデルです。 じつは、以前から外部情報を参照できるテキスト生成モデルを試してみたくて2、 Google の RETRO3 の論文を読んでたんです。 なのですが、外部情報のサイズ感が 1000 B

                                                    はじめての自然言語処理 Fusion-In-Decoder でクイズに答えるモデルを作る | オブジェクトの広場
                                                  • 0.8.0 Release Notes ⚡ The Zig Programming Language

                                                    Tier 4 Support § Support for these targets is entirely experimental. If this target is provided by LLVM, LLVM may have the target as an experimental target, which means that you need to use Zig-provided binaries for the target to be available, or build LLVM from source with special configure flags. zig targets will display the target if it is available. This target may be considered deprecated by

                                                    • Solving Quantitative Reasoning Problems With Language Models

                                                      Solving Quantitative Reasoning Problems with Language Models Aitor Lewkowycz∗, Anders Andreassen†, David Dohan†, Ethan Dyer†, Henryk Michalewski†, Vinay Ramasesh†, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur∗, Guy Gur-Ari∗, and Vedant Misra∗ Google Research Abstract Language models have achieved remarkable performance on a wide range of tasks that require

                                                      • コンピュータにおける三角関数の実装 - Qiita

                                                        Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? コンピュータにおける三角関数の実装 ※この文章は主に Intel社の文献 1 をもとに記述しています。 歴史的な話 1980年代に開発された Intel 8087 プロセッサーでは、sin cos を含む数学関数がハードウェア実装された。 現在の Intel や AMD の x86_64 アーキテクチャ CPU にも、互換性を維持する目的で実装され続けている。(x87) しかしながら、最近のプログラミング言語で sin cos を呼び出しても、 これらの x87 命令が使用されることはなく、ソフトウェア的に計算が行われる。 それには、x

                                                          コンピュータにおける三角関数の実装 - Qiita
                                                        • はじめての自然言語処理 Hugging Face Transformers で T5 を使ってみる | オブジェクトの広場

                                                          前回が分量的にやたらと重かったので、今回はその反省(反動?)を踏まえて軽い感じでいってみます。第7回で紹介した T5 ですが Hugging Face の Transformers でもサポートされてますので、その使用方法をご紹介したいと思います。 1. はじめに 今回は久しぶりに T5 の話です。T5 に関しては第7回、第8回で一度紹介しているので、未読の方は記事に目を通してから戻ってきて頂けると、より理解がしやすいと思います。 さて、 T5 ですが Google のオリジナルコード(以下 “t5"と記述)1は敷居が高いと感じる方もいらっしゃるのではないでしょうか。 Estimator API ベースのコードや gin による設定など慣れていないと、とっつきにくいのではないかと思います。 そこで今回は Hugging Face の Transformers 2を使って T5 を動かす方法

                                                            はじめての自然言語処理 Hugging Face Transformers で T5 を使ってみる | オブジェクトの広場
                                                          • 0.10.0 Release Notes ⚡ The Zig Programming Language

                                                            Tier 4 Support § Support for these targets is entirely experimental. If this target is provided by LLVM, LLVM may have the target as an experimental target, which means that you need to use Zig-provided binaries for the target to be available, or build LLVM from source with special configure flags. zig targets will display the target if it is available. This target may be considered deprecated by

                                                            • PytorchのTransformersのT5を使って要約モデルを作る - 見習いデータサイエンティストの隠れ家

                                                              インターネットの世界にニュースが溢れる昨今、満足度が高いものを的確に読みたいという方も多いかと思います。そのためには、見るニュースをどれにするか判断することが必要になります。そこで、ニュース全体の主旨を短い文章で表す要約の価値が高まっています。 自然言語処理における要約は、大きく2つに分けられます。それは、抽出型と抽象型です。抽出型は、文章の中から重要な文を抜き出すことで要約を作ります。要約として選ばれた文は元の文章にあるものなので、方向性が大きく異ることや誤字脱字がうまれる可能性は低いです。しかし、要約として選ばれた文のそれぞれは関係があるわけではないので、流暢な要約にならないことも多いです。それに対して、抽象型は人間が作るように要約としての文章の流暢さを考慮しながら作ります。本来人間がほしい要約はこちらになりますが、抽出型に比べると難易度が上がり、全く意味がわからない文章になる可能性も

                                                                PytorchのTransformersのT5を使って要約モデルを作る - 見習いデータサイエンティストの隠れ家
                                                              • Accelerate Python code 100x by import taichi as ti | Taichi Docs

                                                                Python has become the most popular language in many rapidly evolving sectors, such as deep learning and data sciences. Yet its easy readability comes at the cost of performance. Of course, we all complain about program performance from time to time, and Python should certainly not take all the blame. Still, it's fair to say that Python's nature as an interpreted language does not help, especially

                                                                • 【時間-周波数解析の基礎】特異スペクトル解析を用いた時系列データの成分分析【SSA】 - LabCode

                                                                  時系列データの特異スペクトル解析 特異値分解 まず,特異スペクトル解析で用いられる特異値分解について説明します。線形代数の言葉が出てきますので,難しいと思う方は飛ばしてもらっても大丈夫です。 階数 $r$ の $m\times n$ 行列 $\mathsf{A}$ に対して,次のような分解 (特異値分解 (singular value decomposition: SVD)といいます) が存在します: $$ \mathsf{A} = \mathsf{U}\mathsf{\Sigma} \mathsf{V}^\top $$ ここに,$\mathsf{U}$ と $\mathsf{V}$ はそれぞれ,$m$ 次と $n$ 次の直交行列 (複素行列の場合は,エルミート行列) で,$\mathsf{\Sigma}$ は $$ \mathsf{\Sigma} = \left(\begin{array

                                                                    【時間-周波数解析の基礎】特異スペクトル解析を用いた時系列データの成分分析【SSA】 - LabCode
                                                                  • 【GROMACS】Umbrella samplingによるMD simulation 【In silico創薬】【SMD】 - LabCode

                                                                    Windows 11 Home, 13th Gen Intel(R) Core(TM) i7-13700, 64 ビット オペレーティング システム、x64 ベース プロセッサ, メモリ:32GB Umbrella Samplingの概要と目的Umbrella Samplingは、分子がめったに起こさないような状態変化(たとえば、タンパク質同士が離れるなど)を詳しく調べるための計算手法です。通常の分子動力学(MD)では、エネルギー的に安定な状態にとどまりやすく、重要な変化が起こる確率が低いため、十分な情報が得られません。 たとえば、タンパク質AとBがくっついている状態から、少しずつ離れていく様子を観察したいとき、まずAとBを少しずつ引き離すSteered Molecular Dynamics(SMD)などのシミュレーションで、さまざまな距離の構造を取得します。その中から、0.5nm、0.7

                                                                    • prompts.chat

                                                                      Welcome to the “Awesome ChatGPT Prompts” repository! While this collection was originally created for ChatGPT, these prompts work great with other AI models like Claude, Gemini, Hugging Face Chat, Llama, Mistral, and more. ChatGPT is a web interface created by OpenAI that provides access to their GPT (Generative Pre-trained Transformer) language models. The underlying models, like GPT-4o and GPT-o

                                                                      • はじめての自然言語処理 文章ベクトル化モデルと ResNet50 で CLIP 風のモデルを作る | オブジェクトの広場

                                                                        今回は前回の文章ベクトル化モデルを使って CLIP 風のモデルを作ります。CLIP は画像とテキストを同じ多次元ベクトル空間にエンコードするモデルで、テキストによる画像検索や Zero shot での画像分類が可能です。簡素化された(非公式)実装が公開されているので、日本語で動かして見ましょう。 1. はじめに 今回は前回の文章ベクトル化モデルを使って CLIP 風のモデルを作ります。CLIP1 は OpenAI が発表した画像とテキストを同一多次元ベクトル空間にエンコードするモデルで、テキストによる画像検索や Zero shot での画像分類が可能です。 オリジナルの CLIP は (画像,テキスト) の 4 億ペアを使い、バッチサイズ 32,768 でスクラッチから学習したようなので、とても Colab では動かせません。また公式実装2も公開されていますが、こちらは事前学習済みのモデル

                                                                          はじめての自然言語処理 文章ベクトル化モデルと ResNet50 で CLIP 風のモデルを作る | オブジェクトの広場
                                                                        • Colabで分子モデリングからMLPで計算【MOF編】 - LabCode

                                                                          本記事は、機械学習ポテンシャルで計算を回すために必要な分子構造を CIF を主軸に整える実践ガイドで、Google Colab 上で ASE / RDKit / pymatgen を用いて分子と骨格を作成し、分率座標での配置・可視化・基本チェックを経て計算にそのまま使える CIF を再現性高く出力する手順を解説し、最終的に得られた CIF を用いた UMA(Universal Machine-learning interatomic potential) による一点エネルギー計算までを最小ステップで到達できるように整理しており、これにより読者は自分の研究対象の分子構造を自在に作成してすぐに研究・教育の試行錯誤へ活用できるようになります。 動作検証済み環境 Google Colab (2025-05-26), Python 3.10, Torch 2.3.0+cu118, TorchANI

                                                                          • PyCharityでの広島コミュニティの発表をきっかけにして電子工作に入門できた #PyCharity - ワタタツの日記!(2021-09-12)

                                                                            ☆ PyCharityでの広島コミュニティの発表をきっかけにして電子工作に入門できた #PyCharity 昨日 2021年9月11日(土) Python Charity Talks in Japan 2021.09 というイベントにすごい広島 with Pythonチームのメンバとして出ました。 出て得られたことのまとめ 電子工作初心者だったわしが、電子工作に入門できた。 広島のすごい広島 with Pythonコミュニティによって、電子工作・Pythonに精通した人たちから一歩一歩学ぶことができた。 「ソフトウェアは趣味でずっとやってきたので少しは書けるが、ハードウェアは全くできない」という複素数、あ違った、コンプレックスが解消できた。 「0が1に」なった実感。急に自分が手を下せる世界が広がった。 普段生活しているときに、「あれ、これってこうやったら作れそうじゃないか」という視点で生活

                                                                              PyCharityでの広島コミュニティの発表をきっかけにして電子工作に入門できた #PyCharity - ワタタツの日記!(2021-09-12)
                                                                            • 自動微分+XLA付き機械学習フレームワークJAXを使用してMNISTを学習させてみる - Morikatron Engineer Blog

                                                                              こんにちは、エンジニアの竹内です。 深層学習を行う際によく利用されるフレームワークといえばGoogleが開発しているTensorflowとFacebookが開発しているPytorchの2大巨頭に加えて、Kerasなどが挙げられるかと思いますが、今回はそのような選択肢の一つとしてGoogleが新しく開発している*1新進気鋭(?)の機械学習フレームワークJAXを紹介したいと思います。 github.com 今回JAXを紹介するきっかけですが、最近話題になったVision Transformerの公式実装のソースコードを読む際に、モデルの実装にJAXが使用されており、少し気になったので勉強がてら触ってみたというのが経緯です。 github.com ディープラーニングのフレームワークの入門といえばMNISTデータセットを使った画像分類ですので、今回はJAXの入門編としてシンプルな多層パーセプトロン

                                                                                自動微分+XLA付き機械学習フレームワークJAXを使用してMNISTを学習させてみる - Morikatron Engineer Blog
                                                                              • Python: Polars で各種エンコーダを実装したライブラリ「Shirokumas」を作った - CUBE SUGAR CONTAINER

                                                                                最近は Polars が気に入っていて、主にプライベートで使っている。 ただ、エコシステムという観点では Pandas に比べて発展途上の段階にあると思う。 そこで、今回は発展の一助として「Shirokumas」というライブラリを作ってみた。 github.com どんなライブラリかというと、現時点の機能では Pandas の category_encoders 1 のサブセットに相当する。 より具体的には、scikit-learn のスタイルで書かれた特徴量抽出をするための基本的なエンコーダを実装してある。 特徴としては、同じ処理を完了するまでにかかる時間が短いこと。 Pandas のエコシステムで使われるフレームワークとパフォーマンスを比較したグラフを以下に示す。 グラフから、比較対象の概ね 1/10 以下の時間で処理を完了できることが分かる。 詳細については、このエントリの後半に記述

                                                                                  Python: Polars で各種エンコーダを実装したライブラリ「Shirokumas」を作った - CUBE SUGAR CONTAINER
                                                                                • Mastering Customer Segmentation with LLM | Towards Data Science

                                                                                  Unlock advanced customer segmentation techniques using LLMs, and improve your clustering models with advanced techniques Content Table · Intro · Data · Method 1: Kmeans · Method 2: K-Prototype · Method 3: LLM + Kmeans · Conclusion Intro A customer segmentation project can be approached in multiple ways. In this article I will teach you advanced techniques, not only to define the clusters, but to a

                                                                                    Mastering Customer Segmentation with LLM | Towards Data Science