Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?
先日のエントリではメディアンの選択にsort()を用い、より効率のよいメディアンの選択方法を課題としました。 さて、今回そのアイデアの一つとして紹介するのはQuick Selectというアルゴリズムです。Quick Selectというアルゴリズム名は一般的ではないかもしれません。また、原典でも異なる呼称がなされている可能性があります。 Quick Selectはかの有名なアルゴリズム、Quicksortの分割部分を利用したアルゴリズムです。QuicksortはC. A. R. Hoareから1962年にComputer Journalにて発表されており、先日紹介したkd木と同様、1980年代に書かれた名著アルゴリズム Cに取り上げられています。日本語版では第1巻、整列のクイックソートの章に掲載されています。 Quick Selectは以下のような特徴を持っています。 平均的に線形時間で走る
The document discusses Cytoscape, a software environment for visualizing biomolecular interaction networks, highlighting its capabilities, tools, and models like the Watts-Strogatz and Barabási-Albert for network generation. It contains technical details about network visualization and examples of node interactions along with a sample GraphML format. Key resources and further information about Cyt
ヤフー株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。LINEヤフー Tech Blog はじめての○○特集3本目の記事です。 はじめまして。ヤフーで社内向けのデータ可視化ツールの開発を担当しているタムラです。 本記事では、ヤフーのデータ分析を支える可視化ツールについて紹介します。「若手エンジニアに贈りたい、はじめての○○特集」、ということなので、なるべくわかりやすく書いたつもりですが、いかんせんテーマがニッチなので、はたして日本に同じような仕事をしている人が何人いるのか、どれくらいの人に役立てる内容なのか、少し不安です。しかし、記事を通して、はじめて分析業務をされる方や、可視化ツールに限らず、はじめてプロダクト開発をされる方にも、少しは生かせるものになっていれば幸いです。 データ可視化ツールってなに? データ可視化ツ
t-SNEは、高次元のデータを可視化する手法としては、非常に便利ですが、時々不可解な挙動をしたり、誤解を招くような可視化をすることがあります。 シンプルなデータを可視化して動作の仕組みを理解することで、t-SNEのより効果的な使い方を学ぶことができます。 t-SNEは、高次元のデータを調査するための手法として、2008年にvan der MaatenとHintonによって発表 [1] された人気の手法です。 この技術は、数百または数千次元のデータですら無理やり2次元の「マップ」に落とし込むという、ほとんど魔法のような能力を備えているために、機械学習の分野で幅広く普及しています。 このような印象を持っている方が多いのですが、こういった捉え方をしていると誤解を招くこともあります。 この記事の目的は、よくある共通の誤解を解くためでもあります。 t-SNEで可視化できることと、できないことを説明す
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く