タグ

機械学習に関するtakeodonのブックマーク (7)

  • ディープラーニングの仕組みと応用

    脳の神経回路の構造を模倣 ディープラーニングは、大量のデータを学習するために、人間の脳の神経回路の構造を模倣(モデル化)した情報処理の仕組みであるニューラルネットワークを用いる。図3のニューラルネットワークは、「入力層」「隠れ層」「出力層」という3層で構成している。また、学習データは入力データとなる手書き文字の画素データと、正解データがセットになっている。 このニューラルネットワークのモデルを学習させるには、まず手書き文字画素データをピクセル単位に分割した上で、各ピクセル値を入力層に入力する。図3のモデルでは縦横28ドットで分割していることから、784個が入力層に並ぶ。 入力データを受け取った入力層は、受け取った値に「重み付け」をした上で、後段にある隠れ層のニューロン(神経細胞。CPUのような役割を担う)に伝達する。 同様に隠れ層の各ニューロンは、入力層から受け取った値をすべて加算し、その

    ディープラーニングの仕組みと応用
  • 3行のソースコードを入れるだけで機械学習できると噂のindicoをNode.jsで使って機械学習入門してみる - Qiita

    こんばんわ。 機械学習というワードはすごく盛り上がっているけど少し離れたところで見ている感じでした。 づや会というイベントで機械学習ネタをやることになり、何かやらねばと思っていたところ、この記事(機械学習について調べてみたら、3行のソースコードを入れるだけで機械学習できるサービスがあった(前編))を読んで機械学習の入門はこういうところからでもありかなと思った次第です笑 ちなみに発表資料はこちらです。 indico 3行のソースコードを入れるだけで機械学習できるサービスです。 主にテキスト解析と画像解析の機能を使えます。 使い方(主に管理画面) まずはユーザー登録をしてログインしてください。 ログインするとダッシュボードを見ることができます。 API Keyを確認しつつQuickstartを選択しましょう。 このようにSentiment Analysis(感情分析)が選択されています。 下部

    3行のソースコードを入れるだけで機械学習できると噂のindicoをNode.jsで使って機械学習入門してみる - Qiita
  • 機械学習に本気で取り組むためにやった数学周り 前半戦結果 - きのこる庭

    自分と同じようなバックグラウンドで「機械学習周辺の数学まわりの勉強をしたい」という人の助けに少しでもなれればと思い、半年間の勉強の軌跡を公開することにした。 ● 前提 ・数学の勉強と言える勉強は高校数学で言う所の数II・Bまでしかやってこなかった。 ・数学が超得意だったかというとそういうわけではなく、まあ普通なライン。 ・大学は情報系で文理一緒だけど、正直大学数学らしい数学はあまりやってこなかった。 ・社会人になって以来ずっと数学コンプレックスで「大学の時もっと理系の勉強をしておけばよかった」と後悔する日々だった。 ・「とにかくツールとか沢山触りまくって慣れた方が良い」という意見も沢山頂いていたのだけど、 – やはり専門の文献を読むとブワーッと数式が出て来て「うっ」となる自分が情けなく感じる経験をした – このまま勉強しないで年をとった後に「あの時やっておけば」という後悔はしたくなかった

    機械学習に本気で取り組むためにやった数学周り 前半戦結果 - きのこる庭
  • 誰でも簡単に人工知能を使えるサービスがヤバすぎる! | プログラミング教育ナビ

    ここ数年、人工知能(AI)や音声認識を使ったサービスが急速に広まっています。「siri」、「OK,Google」など、あなたが呼ぶだけでインターネットにアクセスし用事をこなしてくれるパーソナルアシスタントはますます一般的になってきています。さらには、FacebookはMessengerアプリに「M」という名のパーソナルアシスタントを入れようとしています。世界中では、次々と最新のテクノロジーを活用したサービスが登場しているのです。もし、人工知能を搭載したサービスやIoTデバイスを使ったアプリなどを自分でプログラミングして作れたら・・と考えてる方も少なくないのではないでしょうか。 今回は、そんなあなたのためにアプリやIoTデバイス上で音声認識人工知能を簡単に使えるようになるサービスをご紹介します。 また人工知能を勉強できるおすすめの書籍を紹介しています。 興味を持たれた方は下記からご覧くださ

    誰でも簡単に人工知能を使えるサービスがヤバすぎる! | プログラミング教育ナビ
  • 特にプログラマーでもデータサイエンティストでも�ないけど、Tensorflowを1ヶ月触ったので超分かりやすく解説 - Qiita

    特にプログラマーでもデータサイエンティストでも�ないけど、Tensorflowを1ヶ月触ったので超分かりやすく解説Python機械学習DeepLearningTensorFlow これ書くだけで土日2日間まるまる潰れてしまった。 学んだ内容に沿っているので、順に読み進めるに従ってコードの話になっていきます。 Tensorflow触ってみたい/みたけど、いろいろまだ理解できてない!という方向けに書きました。 ※2018年10月4日追記 大分古い記事なのでリンク切れや公式ドキュメントが大分変更されている可能性が高いです。 この記事のTensorflowは ver0.4~0.7くらいだった気がするので ver2.0~となりそうな現在は文章の大半が何を参考にしているのか分からないかもしれません。 1: Deep Learningってそもそも何してるの? 専門の人からはご指摘入りそうですが、要は回帰

    特にプログラマーでもデータサイエンティストでも�ないけど、Tensorflowを1ヶ月触ったので超分かりやすく解説 - Qiita
  • 文系でも機械学習がわかるようになる教科書 - EchizenBlog-Zwei

    社内の有志で機械学習数学の勉強会をいくつかやっています(私以外の方が主催しているものもある)。とくに理系ではない方も参加されていますが、きちんと頑張ればだんだん機械学習ができるようになるということがわかってきたのでメモしておきます。 なお、機械学習をとりあえず実装するだけだったらもっと簡単に学ぶ方法もいろいろあり、今回はあくまで正攻法で機械学習を勉強する、という観点での書籍の選択となっています。急がば回れという言葉もあるように、焦って成果を求めないのであれば地道に頑張るほうが後々応用が効いて良いということもあります。 高専の数学 おそらく数学ができないという方は高校の数学あたりから理解が怪しいことになっていると思います。「高専の数学」は中学数学までの前提知識で読める教科書で、わかりやすい例題や理解の助けになる練習問題が多数用意されているため、きちんと問題を解いていけば無理なく高専の数学(

    文系でも機械学習がわかるようになる教科書 - EchizenBlog-Zwei
  • Autogradという野郎が乗り込んできたのでガクブルな件 - Qiita

    Autogradという野郎が乗り込んできました。はい、そりゃもういきなり。複雑な確率モデルや損失関数だとしても、パラメータに関する勾配をこれでもかというぐらい簡単に計算できちゃうので、機械学習の世界に大きな影響を与えそうです。現時点では、PythonとTorchでの実装が公開されているようですが、これからJuliaなど他の言語でも実装されていきそうですね。 (補足:この記事を書いたすぐ後にGoogleがTensorFlowなるものを出してきまして、そちらでも自動微分がしっかり実装されてるみたいです〜。機械学習関連のフレームワークは移り変わりが激しいですねー ^^; ) ちなみに始まりはこんな感じでした。 ゆるいですね。 とりあえずチュートリアルやりながら、Python版チュートリアルの前半部分にテキトーな日語訳をつけたので、ここでシェアしておきます。英語が読める方は、僕のヘンテコな日

    Autogradという野郎が乗り込んできたのでガクブルな件 - Qiita
  • 1