タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

pythonとPythonとstatisticsに関するteddy-gのブックマーク (24)

  • Matrix Factorizationとは - Qiita

    Machine Learning Advent Calendarです。 普段はGunosyという会社で推薦システムを作ってます はじめに 推薦システムに関する最近の文献を読むと結構な割合で出てくるMatrix Factorizartion(MF)と呼ばれる手法があります。 ざっくり言うとこの手法は協調フィルタリングにおける次元削減を行うことでよりよい推薦を行おうという手法であり、 Netflix Prize(100万ドルの賞金が賭けられた推薦システムのコンテスト)で最も成果を上げたモデルの一つでもあります。 記事ではこの手法を紹介していきます。 協調フィルタリング まず協調フィルタリングについておさらいしましょう。 あるサービスで3人のユーザが5つのアイテムに対して5段階評価をしたとき、その評価値を以下のようにベクトルで表すことができます。

    Matrix Factorizationとは - Qiita
    teddy-g
    teddy-g 2016/02/25
    Matrix Factorizationの説明と実装。途中の概念説明がわかりやすい。あと、式の説明もある。
  • matplotlibで3Dグラフを描画する - white wheelsのメモ

    準備 データ処理用にnumpy、プロット用にpyplot、3次元なのでmpl_toolkits.mplot3dをインポートします。 from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np 描画するデータの作成 3次元で描画するにはメッシュ(2次元の網目)を作成するために2次元の配列を用意する必要があります。 まずarangeメソッドでx,yそれぞれを1次元領域で分割します。 x = np.arange(-3, 3, 0.25) y = np.arange(-3, 3, 0.25) 2次元メッシュを作成するにはmeshgridメソッドを利用します。この関数の戻り値はX,Yに対応する行列で、Xは行にxの配列を、Yは列にyの配列を入れたものになっています。 X, Y =

    matplotlibで3Dグラフを描画する - white wheelsのメモ
    teddy-g
    teddy-g 2016/02/23
    Python、ってかmatplotlibで3次元散布図を書いたりする方法。
  • Principal components analysis using pandas dataframe

    teddy-g
    teddy-g 2016/02/17
    PandasとNumpyとScikit-Learn使ってPCAの簡単なサンプル。こいつ、動くぞ。
  • RとPythonの連携 – Momentum

    概要 ・PythonとRを連携させることで、PythonからRのコードを実行させる ・統計的な分析はRに、データのハンドリングなどはPythonに任せるのが現時点での最適解か ・この記事はR Advent Calendar 2014(https://atnd.org/events/58648)の12/10用の記事です モチベーション 専らRやPythonはトレーディング戦略のシミュレーションに用いているわけですが、たまには統計的な分析結果をもとにトレードする戦略などを考える時もあります。 シミュレーションの体はPythonで構築しているので、自ずとPythonで統計分析モジュールも構築する必要があるのですが、これがなかなかかゆいところに手が届かない。 (scikit-learn?知らない子ですね。) やはり屋ということで、統計分析はRに任せたい。 というか今まで培ってきたRのノウハ

    RとPythonの連携 – Momentum