本プログラムの最大の特徴の一つは、全てのトピックについて、演習を中心に構成されている点です。実際に手を動かしながら理解を進めることで、効率よく学習することができます。 実際にモデルを学習させながら技術を習得する本格的な演習内容となっています。Deep Learningは、モデルが実際に学習する様子を観測し、パラメータを調整することでアプリケーションに応じたパフォーマンス最大化を行うことが非常に重要な技術ですが、この一連の流れを全ての演習で経験しながら重要な要素を身につけることが可能です。
【2021/1/11】2021年版を公開しました 【2020/1/9】2020年版もあります, こちらもよろしくおねがいします! 【2019/8/12】一部書籍のリンクを最新版に更新しました 【2018/12/24追記】最新版を公開しました!「Python本まとめ・2019年版 - Webとデータ分析を初心者が仕事にするまで - Lean Baseball」 機械学習にWebアプリ,そしてFintechと,今年(2017年)は昨年(2016年)以上にPython界隈が賑やかな一年でした. Pythonでお仕事と野球データ分析を生業としている@shinyorke(野球の人)ですこんにちは. このエントリーでは,そんなPythonの学び方・本が充実した今年から来年(2018年)に移るにあたり, 最短距離でPythonレベルを上げるための学び方・読むべき本の選び方〜2018 をまとめてみました.
この記事は Linux Advent Calendar 2017 - Qiita の3日目の記事です。 本日は Linux デスクトップを実際に業務で使っているという話です。 私は今年に入ってから業務でずっと ArchLinux 環境の DELL XPS13 9360/XPS13 2 in 1 を使ってきたのですが、 そろそろ1年位経つのでそのへんの利用状況とか「実際どんな感じなの?」ということをざっくばらんに書いてみようと思います。 アウトライン 自分の仕事について なんで Linux デスクトップを業務で使ってるの? なんで ArchLinux ? 実際に業務で使っている PC の環境をもろもろ紹介 利用しているPC ArchLinux のインストール状況 利用しているLinux環境、ソフトフェア 基本的なデスクトップまわり Webブラウザ エディタ・コーディング 開発・検証環境 ター
この記事は、以下の方向けに執筆しています。 ・とにかくAIブームに乗りたい方 ・転職してAI案件に携わりたい方 ・AIに必要な知識だけをざっくり身に付けたい方 関連記事:AI人材になるにはスキルよりまず職種を選択しよう 清水亮さんがAI人材の不足を言われてから、人材不足感は一向に変わっておらず、むしろ不足感が強まっている。企業が本格的に取り組み始めたのに、検証できる人材が誰もいない。データ分析経験があったり、Pythonでnumpyとか少し触れる人が、AI人材として急に売れっ子になるのを何度も見てきたし、その流れはしばらく続くんだと思う。 BIベンダも最近その流れに乗って売り込み始めた。コンサル会社は、AIコンサルと言い始めた。SIベンダは、AIの専門部署をたくさん作り始めた。メーカーもR&D中心にAI人材を採用しはじめてる。 CONNPASSで機械学習と名の付くセミナーはすべて人気で埋ま
はじめに どうも初めまして、グレブナー基底大好きbot (Twitter:@groebner_basis) です。 最近、プログラマ向けの数学のセミナーや勉強会*1が開催されるなど、コンピュータを専門にする人が純粋数学に興味を持つ機会が増えてきました。 そこで、この記事では、計算科学とも関わりの深い「可換環論」について、プログラミングの側面から解説していきたいと思います。 可換環論とは 可換環論は、代数学に含まれる分野で、140年以上の歴史があります。名前の通り、「可換環」と呼ばれる数学的対象を研究する分野です。この可換環については、後々詳しく説明したいと思います。 かつての数学者は、計算といえば紙に書く「手計算」が主な手法でした。しかし、近年では、コンピュータの発達に伴い、可換環論の色々な計算が数式処理システム(Computer Algebra System) で実現できるようになりまし
音楽制作を行っていて人工知能技術に興味がある、あるいは機械学習をやっていて音楽が好きだ!そんな方に送る、機械学習による音楽生成のチュートリアル資料となります。本記事のみで、仕組みの理解から実際に音楽を生成して、SoundCloudで共有するまでの手順を網羅しています。 そして、本記事は先日実施した人工知能時代の音楽制作への招待 - Google Magenta 解説&体験ハンズオン -の自習用資料でもあります。 イベント自体は100名を超える方(開催前日の段階で倍率が5倍)に応募いただき、行きたかったけど行けなかった!という方も多いかと思うので、自習編にて内容に触れていただければと思います。 ※なお、会場のキャパを広げられなかった代わりに撮影をしていただいたので、後日講義動画が上がればそちらも掲載させていただきます。 ゴール 音楽生成とはそもそもどういう仕組みで、どんなアプローチが取られて
はじめに 今回はpythonによる画像処理のお話です。 普段仕事ではRubyメインなのですが、最近趣味でpythonを勉強しはじめ、画像を加工するのが意外と簡単だと分かったので、簡単な画像処理について書いてみました。 pythonについてはまだまだ勉強中なので、python的にはこうは書かない、これだと処理が遅い、コードが汚いなどなどありましたら、コメントで教えていただけると幸いです。 また、以下のコードではpythonのライブラリ、numpy, pillowを使用しています。 著者の環境ではwindows10上でAnaconda3を使用しているため別途インストールは不要でしたが、実行する際は必要に応じてインストールをお願いします。 画像処理の概要 画像の加工は単純に各ピクセルの色を画像の端から端まで順番に変更することで実現しています。 そこで、まずは画像ファイルを読み込み、操作しやすいよ
Raspberry Pi4へのディープラーニング環境セットアップに関して 最新のラズパイ4でのディープラーニングの開発環境構築に関して、以下記事でまとめています。今から、ラズパイ4で最速で環境構築したい方は、以下記事参照下さい。ラズパイ3にも対応しています(同じ要領でセットアップ可能です)。 これ以降は、古い情報が含まれていることご了承ください。 Raspberry PiとTensorFlowでディープラーニング 最近、人工知能とかディープラーニングに関して興味を持っていて、以下のような記事でまとめたりしました。 ただ、本やネットの記事を見ただけだと、あまり頭の良くない自分には全然ピンとこないというのが正直なところです。そこで、今までChainerという日本製のディープラーニングのフレームワークを使って色々実験してみたのですが、サンプルを動かすことはできても、それ以上のことが何もできなくて
英語版はこちら。 TensorFlowの登場以降、OSSベースの機械学習の盛り上がりは加速しています。Kerasの作者のFrançois Cholletさんの言葉が、この状況を非常に端的に表しています。これだけでも十分だとは思いますが、この記事では、なぜオープンソースの機械学習が強いのか、最近のどういった流れがあるのかを整理したいと思います。 tl;dr機械学習やDeep Learningのフレームワークが充実してきた論文が査読前に公開され、他社も簡単にアルゴリズムの検証ができるようになった多くのプレーヤーの参戦により、アカデミアでの機械学習の研究がレッドオーシャン化した他社にないアルゴリズムで一発勝負、実装は秘密、というアプローチが厳しい牧歌的な時代5年前10年前の世界では、先端の機械学習に取り組んでいるのは大学などの研究室、大企業の研究所や一部の先進的な企業がほとんどでした。特に、ラベ
データ分析やデータ加工、機械学習などを行うのに便利な Python ライブラリを紹介する。 なぜ Python なのか 統計や機械学習をするなら、 R という選択肢もある。 R のデータの加工や集計、統計処理に優れた言語であり、言語標準の機能だけでかなりのことができる。機械学習のライブラリも充実しており、有力な選択肢であることは間違いない。 R と比較して Python が優れている点は、周辺エコシステムの充実にある。 Python エコシステムはデータサイエンスの分野に留まらない。 NumPy や Pands で加工したデータを Django を使った本格的な Web アプリケーションで利用することも可能だ。 ライブラリ群のインストール ここで挙げているライブラリのほとんどは Anaconda で一括でインストールできる。 データ加工 NumPy NumPy は数値計算を効率的に行うため
画像処理を基礎から学ぶ 私は、カメラが好きなこともあり、画像処理に関しても興味あります。一般的には、RAW現像とかPhotoShopのテクニックなどを身につける人が多いようですが、私の場合は、何故かpythonやOpenCVという便利な画像処理ライブラリを使って画像処理ソフトを自作するところから始めようとしています。 ただ、OpenCVは便利なのですが、便利さがゆえにブラックスボックス的に使ってしまっているのが気になっていました。やっぱり内部で何をしているかわかっていないと、ちょっとAPIに無い処理をしたいときや、問題が発生したときに何をどうすれば良いのか全然分からないですし、OpenCVを使うまでもない処理にOpenCVを使ってしまうのもよろしく無いなと思います。Open CVインストール手間ですし結構時間かかるので(特にRaspberry Piとかだと)。 基礎から理解するには、Ope
(注:2017/07/19、いただいたフィードバックを元に翻訳を修正いたしました。) ESM、CJS、UMD、AMD — どれを使うべき? 最近、 Twitter では、 ESモジュール の現状、特に、 *.mjs をファイル拡張子として導入すると決めた Node.js の現状について大騒ぎになっています。この話題は複雑で、かなりの労力を費やしてそれに専念しないと議論について行けないので、 皆が恐れと不安を抱く のも無理はありません。 古き恐れ フロントエンド開発者なら、 JavaScriptの依存関係の管理に悩まされた日々 を憶えている人も多いでしょう。あの頃は、ライブラリをベンダーフォルダにコピー&ペーストし、グローバル変数に依存し、あらゆる物を正しい順序でconcatしようとしてもネームスペースの問題に対処する必要がありました。 何年もかかって、私たちは共通モジュール形式と中央集権
Webサイトの状況を監視するためのスクリプトを動かしたいというシチュエーションが発生することがあります。典型的な例としてECサイトの在庫監視などがあると思います。この文章を読んでいる人の中には、Nintendo Switchの在庫状況を監視して通知するスクリプトを動かしている人もいるもいるのではないでしょうか。*1 在庫確認のようなシチュエーションでは常時起動しているPC、すなわちサーバに相当するものを用意しなければなりません。VPSを借りる人も多いと思いますが、スクリプトを動かすだけに使用するには少々オーバースペックです。 そこで今回はAWS Lamdaを使って安価にサーバレスでサイトの在庫状況を監視するシステムを構築します。例としてNintendo Switchの在庫状況を通知するシステムを作ります。 おそらく無料枠内で収まると思いますが、無料枠を超えたとしてもAWS Lambda自体
Pythonista(Python使い)の中で有名かつプロフェッショナルが集まる強者集団(株)ビープラウドさん*1が満を持してリリースされたPythonのオンライン学習サービス「PyQ」を試してみました. pyq.jp 佐藤社長のご厚意で利用アカウントをいただき,実際利用してみました.*2 簡単ではありますが,利用した時のレポートとサービスの感想,「どんな方々にオススメか?」的なレビューを簡単に書きたいと思います. この夏,プログラミングを覚えたい(特にPython)という方は是非ご一読ください! で,PyQどうなのよ? 下手な本を読んだり勉強会参加するマンになるぐらいだったら,PyQを一ヶ月集中してやり切ったほうが絶対いい!この夏に(2,980円はお買い得). 学習コンテンツの粒度・写経をベースに覚える思想・操作感が良い(一部改善して欲しいところはあるが) 「実務で通用するレベルに」「9
オライリー・ジャパンは、単純作業を自動化する方法が学べる技術書『退屈なことはPythonにやらせよう──ノンプログラマーにもできる自動化処理プログラミング』を発売しました。プログラミング未経験者を対象にしており、手作業だと時間がかかる処理を一瞬でこなすPython 3プログラムの作り方が紹介されています。価格は3,996円(税込)です。 ▽ O'Reilly Japan - 退屈なことはPythonにやらせよう Pythonは、さまざまなプログラムを分かりやすく簡潔に書けるという特徴を持つプログラミング言語です。『退屈なことはPythonにやらせよう──ノンプログラマーにもできる自動化処理プログラミング』は、ファイル名の変更や表計算のデータ更新といった単純作業を一瞬でこなせるプログラムの作り方を学べるというもの。基本をマスターすれば、プログラミング未経験者でも「面倒な単純作業を苦もなくこな
本記事は、元記事を翻訳した記事の前編となります。 B/C/D節については後編をご参照ください。 “マルコフモデルとは何か” という議論は昔からありますが、もし皆さんがその答えを知りたいのであれば、正直なところ、ウィキペディアを見る(または以下のTLDRだけを読む????)ことをお勧めします。一方、マルコフモデルの概要やこのモデルが重要である理由、およびその実装方法に興味があり、サンプルを通じて理解を深めたいという方は、この記事を引き続きご覧ください(^ ^)。以下で、 具体例を挙げて説明します。 TLDR: 確率論 において、マルコフモデルは不規則に変化するシステムを モデル化 するための 確率モデル である。なお、未来の状態は現在の状態のみに左右され、過去に起きた事象には影響されないと仮定する(つまり、 マルコフ性 を仮定する)。 引用元: https://en.wikipedia.or
はじめに MeCabとは日本語の形態素解析器をいいます。ここで、形態素というのは言語で意味を持つ最小単位のことです。分割された単語をベクトル化したり、各語彙の頻度を調べたりするために、最小単位に分割するモチベーションが生じます。 そもそもなぜ、形態素解析なんかやるの?っていう動機については、http://qiita.com/Hironsan/items/2466fe0f344115aff177 とかに書かれている通り、(上記の記事では、単語の分割が形態素解析に当たります)、分割された単語をベクトル化したり、各語彙の頻度を調べたりするためです。今回は、MeCabを用いて、できるだけ、精度高く分かち書きできるように頑張ります。1 追記) もう一つのMecabをブーストさせよう(Google Search Console編: https://qiita.com/knknkn1162/items/
Jeremy Howardによる ディープラーニングの素晴らしいコース を受講している間、自分の前提知識がさびついてきているせいで、誤差逆伝播法のような概念が理解しにくくなっていることを認識しました。そこで、理解度を上げるべく、そうした概念に関するいくつかのWikiページをまとめてみることにしました。本記事では、ディープラーニングでよく使われる線形代数演算のいくつかについて、ごく基本的な事項をざっとご紹介します。 線形代数とは? ディープラーニングの文脈での線形代数とは、数の集合を同時に操作するための便利な手法を提供してくれる、数学的ツールボックスです。これらの数値を保持するためのベクトルや行列(スプレッドシート)のような構造体と、それらを加算、減算、乗算、および除算するための新しい規則を提供します。 線形代数が便利な理由 線形代数は、複雑な問題を単純で直感的に理解できる、計算効率の良い問
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く