タグ

2015年8月21日のブックマーク (2件)

  • Pythonにおけるプロファイリング ― コードの高速化のために | POSTD

    ここHumanGeo社ではPythonを使うことが多く、それは極上の楽しみでもあります。美しく機能的なコードを短時間で記述するのにPythonはうってつけで、私個人にとっても一押しの言語です。仕事に限らずプライベートでも使っています。そんな素晴らしいPythonですが、欠点がないわけではありません。それはあまりにも遅いことです。幸いPythonには、コードをプロファイリングするための優れたツールがいくつかあるので、コードの美しさと速さを共存させることができます。 HumanGeoで働き出した頃、実行に長時間を要すプログラムのボトルネックを探り、何とかしてそれを速くさせるという仕事を担当しました。その内容は、 cProfile や PyCallGraph ( ソース )、はたまたPyPy(高速なPython用代替インタプリタ)などの各種ツールを使って、プログラムを最適化するためのベストな方法

    Pythonにおけるプロファイリング ― コードの高速化のために | POSTD
  • ディープ・ラーニングがぶつかった分厚い壁---最先端のAIでも、人間のように言葉を操ることはできない!(小林 雅一) @gendai_biz

    ディープ・ラーニングがぶつかった分厚い壁---最先端のAIでも、人間のように言葉を操ることはできない! 先週のコラムでは、マイクロソフトが開発したAI女子高生を「りんな」を取り上げた。現在、その会話能力はお世辞にも高いとは言えないが、今後とも劇的に改善することは(少なくとも当面は)ないだろう、と述べた。 筆者がそう予想する理由は、「りんな」の基盤技術である最先端AI「ディープ・ラーニング」が今、分厚い壁にぶつかっているからだ。それを以下、説明していきたい。 「見て、聞くAI」は「言葉を操るAI」にも応用できるのか? ディープ・ラーニングは今までのところ「画像認識」や「音声認識」など、いわゆるパターン認識の分野で極めて高い性能を示している。この大きな理由の一つは、ディープ・ラーニングが格的な脳科学の研究成果、中でも大脳の視覚・聴覚野などに共通する認識メカニズム「スパース・コーディング」を導

    ディープ・ラーニングがぶつかった分厚い壁---最先端のAIでも、人間のように言葉を操ることはできない!(小林 雅一) @gendai_biz