You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
In many real-world scenarios, rewards extrinsic to the agent are extremely sparse, or absent altogether. In such cases, curiosity can serve as an intrinsic reward signal to enable the agent to explore its environment and learn skills that might be useful later in its life. We formulate curiosity as the error in an agent's ability to predict the consequence of its own actions in a visual feature sp
AdaGradは学習率を自動調整してくれる勾配法の亜種で、いろんな人が絶賛しています。 勾配を足し込む時に、各次元ごとに今までの勾配の2乗和をとっておいて、その平方根で割ってあげるだけと、恐ろしくシンプルです。 Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hazan, Yoram Singer. JMLR 2011. 丁度、 @echizen_tm さんがブログを書いてました。 AdaGrad+RDAを実装しました。 通常のSGDなどは学習率をだんだん減衰させながら勾配を足していくわけですが、どの様に減衰させるかという問題にいつも頭を悩ませます。 AdaGradでは最初の学習率こそ外から与えますが、減衰のさせ方や減衰率といったハイパーパラメータから
毎日暑いですね。比戸です。 ちょうど今週シカゴで開かれていたSIGKDD2013でBest research paperに選ばれたEdo Liberty氏 (Yahoo! Haifa Labs)の”Simple and Deterministic Matrix Sketching”のアルゴリズムを実装して公開してみました。 元論文PDFは著者サイトから、私が書いたPythonコードはGithubからそれぞれ入手できます。 SIGKDD (ACM SIGKDD Conference on Knowledge Discovery and Data Mining)はACM主催で行われる、知識発見&データマイニングにおけるトップ会議です。最近は機械学習との境目が曖昧になってきましたが、査読時には理論的な新しさだけでなく、実データ(特に大規模データ)を使った実験での評価が必要とされるのが特徴です。
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く