タグ

ブックマーク / tech.preferred.jp (17)

  • Preferred Networks における研究活動 - Preferred Networks Research & Development

    こんにちは、新しく執行役員兼 Chief Research Strategist に就任した秋葉です。就任の挨拶を兼ねて、PFN における研究活動に関する考えを共有したいと思います。 PFN における研究とは何か? 何が研究であり何が研究でないかという境界を引くのは非常に難しく、またそれを積極的に行う意味もありません。研究とは「研ぎ澄まし究めること」を語義とし、一般に、物事について深く調査・考察を行い事実を解明したり発明を行ったりすることを指します。 PFN では挑戦的であり不確実性の高いプロジェクトが大部分を占めており、ほぼ全てのプロジェクトが少なからず研究的側面を伴います。深層学習関連のコア技術の研究開発は勿論、その応用に関してもデータやタスクに応じた適切な手法の選択や非自明な工夫がなければ上手くいかないことが殆どです。また、ロボティクス、コンピュータビジョン、自然言語処理等のような多

    Preferred Networks における研究活動 - Preferred Networks Research & Development
  • 分散深層強化学習でロボット制御 - Preferred Networks Research & Development

    新入社員の松元です。はじめまして。 “分散深層強化学習”の技術デモを作成し、公開いたしました。ロボットカーが0から動作を学習していきます! まずはこの動画を御覧ください。 以下で、動画の見どころと、使っている技術を紹介します。 動画の見どころ Car 0(○の付いている車)が右折カーブの手前で減速する様子(右画面の白いバーのところが、ブレーキのところで赤くなっている。ニューラルネットはブレーキが最も多く報酬が得られると推測していることがわかる)。速い速度ほど報酬は大きいが、カーブを曲がりきれず壁にぶつかってしまうので学習が進むとカーブ手前でのみ減速するようになる。 目の前に車がいるときは一時停止して、いなくなってから加速する。 エチオピアには当にこのような交差点があるらしい。 ぎりぎりですれ違う2台。学習途中ではすれ違いきれずにぶつかって倒れてしまうこともある(早送りシーン中に人が写って

    分散深層強化学習でロボット制御 - Preferred Networks Research & Development
  • Deep Learning のフレームワーク Chainer を公開しました - Preferred Networks Research & Development

    こんにちは、得居です。最近は毎晩イカになって戦場を駆けまわっています。 日、Deep Learning の新しいフレームワークである Chainer を公開しました。 Chainer 公式サイト GitHub – pfnet/chainer Chainer Documentation Chainer は、ニューラルネットを誤差逆伝播法で学習するためのフレームワークです。以下のような特徴を持っています。 Python のライブラリとして提供(要 Python 2.7+) あらゆるニューラルネットの構造に柔軟に対応 動的な計算グラフ構築による直感的なコード GPU をサポートし、複数 GPU をつかった学習も直感的に記述可能 ニューラルネットをどのように書けるか 次のコードは多層パーセプトロンの勾配を計算する例です。 from chainer import FunctionSet, Vari

    Deep Learning のフレームワーク Chainer を公開しました - Preferred Networks Research & Development
  • Deep Learningと自然言語処理 - Preferred Networks Research & Development

    クリスマスイブの夜は男三人しかいないオフィスで関数型言語の素晴らしさについて語っていた西鳥羽です。こんにちは。 昨日のPFIセミナーで「Deep Learningと自然言語処理」というタイトルで発表させていただきました。以下がその時の資料です。 この辺りに興味を持たれた方は今度の1月20日に「NIPS 2014 読み会」http://connpass.com/event/10568/ もどうぞ。残り枠数少ないので申し込みはお早めに。 当はBoltzmann Machine, Deep Belief Network, Auto Encoder, Stacked Auto EncoderなどのDeep Learningの歴史的なところも説明したかったのですが端折ってしまいました。Deep Learningそのものの説明も含めて以下の資料が参考になります。 http://ci.nii.ac.j

    Deep Learningと自然言語処理 - Preferred Networks Research & Development
  • 機械学習CROSSをオーガナイズしました - Preferred Networks Research & Development

    もう豆まきしましたか?比戸です。 1月17日に、エンジニアサポートCROSSで機械学習のセッションをオーナーとして主催させて頂きました。今回はその報告と内容のまとめをさせて頂きます。 エンジニアサポートCROSSは今年で3回目を迎える、主にWeb系のエンジニアが集まる技術イベントで、今年も800人以上が集まったそうです。すごいですね。 並列開催されるパネルディスカッションを基とするイベントで、有名なWeb関連サービスを持っているわけではないPFIの私がオーナーということで、持てる人脈をフル活用してパネリストをお願いしたところ、お声がけした方全員にご登壇いただけることになりました。 Yahoo!JAPAN研究所 田島さん 楽天技術研究所 平手さん ALBERT 小宮さん FFRI 村上さん 産総研 油井さん Gunosy 福島さん 大手Web企業から尖ったサービスの会社、アカデミア周辺まで

    機械学習CROSSをオーガナイズしました - Preferred Networks Research & Development
  • NIPS2013読み会を開催しました - Preferred Networks Research & Development

    もう花粉飛んでるらしいですね。比戸です。 昨年開いたICML2013読み会に続き、NIPS2013の論文を紹介する会を開きました。平日夜にも関わらず60名以上の申し込み、50名以上の参加があり、改めて機械学習への興味の高さを裏付けるものとなりました。会場提供にご協力頂いた東大の武田朗子先生、中川裕志先生、および発表者の皆さんありがとうございました。 ここで特筆したいのが、@mooopanさんが選んだ”Playing Atari with Deep Reinforcement Learning“です。 話題のDeep Neural Networkと強化学習を組み合わせて、テレビゲームで人間にも勝ったという、この日唯一のワークショップ論文紹介だったのですが、なんと著者の所属するDeepMind TechnologiesがGoogleに500億円以上で買収されたというニュースが3日前飛び込んでき

    NIPS2013読み会を開催しました - Preferred Networks Research & Development
  • データ解析作業の救世主! 超絶☆実験ビルドシステムmafをOSS公開しました - Preferred Networks Research & Development

    Photo by midiman under Creative Commons License (original) メリークリスマフ! 得居です。今日はクリスマスですね。皆様昨日はいかがお過ごしでしたでしょうか? クリスマスということで、今日は私たちから皆様に、特にデータ解析や論文執筆、手法の比較検証のために計算機上で様々な実験をしている方々に、プレゼントがあります! Github – pfi/maf 今日、実験結果を「ビルドする」ためのツールmafを公開しました! mafは、PFIでもよく使われているPythonベースのビルドツールwafを実験に使うための拡張です。大まかな使い方を学ぶために、ドキュメントとサンプルも公開しています。 maf — maf 0.1 documentation サンプル 実験手順をビルドだと思って宣言的に書くこと自体はwaf等既存のビルドツールで可能です。m

    データ解析作業の救世主! 超絶☆実験ビルドシステムmafをOSS公開しました - Preferred Networks Research & Development
  • 多項式フィッティングのワナ - Preferred Networks Research & Development

    今回は新しい試みとして、かわいい柴犬の画像によっていろいろなことをごまかすことにチャレンジしています。なお、画像はflickrからCCライセンスのものをお借りしております。画像をクリックするともっと大きいのが見れるよ。 さて、題に移りましょう。今日のテーマは多項式フィッティングです。より正確には、多項式フィッティングに関して、私がいくつかの落とし穴にはまった記録です。 多項式フィッティングというと、観測されたデータから項の係数を決める問題です。 もう少し具体的に書くと、 \(f(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 \ldots\) の\(w_0, w_1, \ldots\)の具体的な値をどう決めれば得られたデータに近い曲線が得られるか、というような問題です。ただし、観測したデータには必ずノイズが乗るものなので、誤差が0になるような曲線を作ればそれでよ

    多項式フィッティングのワナ - Preferred Networks Research & Development
  • 今年のSIGKDDベストペーパーを実装・公開してみました - Preferred Networks Research & Development

    毎日暑いですね。比戸です。 ちょうど今週シカゴで開かれていたSIGKDD2013でBest research paperに選ばれたEdo Liberty氏 (Yahoo! Haifa Labs)の”Simple and Deterministic Matrix Sketching”のアルゴリズムを実装して公開してみました。 元論文PDFは著者サイトから、私が書いたPythonコードはGithubからそれぞれ入手できます。 SIGKDD (ACM SIGKDD Conference on Knowledge Discovery and Data Mining)はACM主催で行われる、知識発見&データマイニングにおけるトップ会議です。最近は機械学習との境目が曖昧になってきましたが、査読時には理論的な新しさだけでなく、実データ(特に大規模データ)を使った実験での評価が必要とされるのが特徴です。

  • NIPS2012に行ってきました - Preferred Networks Research & Development

    先日、NIPS (Neural Information Processing Systems)という学会に参加してきました。今回はその報告です。 NIPSは機械学習の分野においてはトップに位置づけられる会議の一つです。今回、私は特に発表とかはなかったのですが、幸運にも参加することができました。2012年からしばらくは、アメリカ合衆国ネバダ州タホ湖湖岸にあるHarveys HotelとHarrah’s Hotelで開催されます。今回はチュートリアルからワークショップまで、6日間すべてに参加してきましたので、その印象を独断と偏見で語ります。 NIPSはシングルトラックで招待講演と口頭発表を聞いて、残りは全部ポスターセッションという構成になっているのですが、これは口頭発表で聞き逃しもないし、詳しく聞きたい奴はポスターで詳しく聞けるし、なかなかうまい方式だと感じました。代償として口頭発表は非常に数

    NIPS2012に行ってきました - Preferred Networks Research & Development
  • 機械学習と自然言語処理とビッグデータ - Preferred Networks Research & Development

    岡野原です。 情報処理学会主催の連続セミナー「ビッグデータとスマートな社会」での機械学習の回、自然言語処理の回での講演資料を公開しました。 今年はビッグデータという言葉が広まったということで、このテーマで話す機会が多かったです。今はビッグデータというとそれを支えるインフラ、クラウド、DBなどがまず注目されていますが、我々としては実際それを使って何をするのか、何が実現できるのかというところを注目しています。 PFIは元々こうしたデータを分析して価値を提供する(検索エンジンとかもその範疇に入ると思います)ことをずっと続けてきたわけですが、ビッグデータという言葉が広まってくれたおかげでこの考えがより受け入れられ様々な業界の方と随分と話がしやすくなったと思います。 以下の講演資料では、今ビッグデータの中でも機械学習と自然言語処理の分野において我々がどこに注目しているのかを話をしました。

    機械学習と自然言語処理とビッグデータ - Preferred Networks Research & Development
  • ニューラルネットの逆襲 - Preferred Networks Research & Development

    岡野原です。Deep Learningが各分野のコンペティションで優勝し話題になっています。Deep Learningは7、8段と深いニューラルネットを使う学習手法です。すでに、画像認識、音声認識、最も最近では化合物の活性予測で優勝したり、既存データ・セットでの最高精度を達成しています。以下に幾つか例をあげます。 画像認識 LSVRC 2012 [html]  優勝チームスライド [pdf], まとめスライド[pdf] Googleによる巨大なNeuralNetを利用した画像認識(認識として有名)[paper][slide][日語解説] また、各分野のトップカンファレンスでDeep Learningのチュートリアルが行われ、サーベイ論文もいくつか出ました。おそらく来年以降こうした話が増えてくることが考えられます。 ICML 2012 [pdf] ACL 2012 [pdf] CVPR

    ニューラルネットの逆襲 - Preferred Networks Research & Development
    tnal
    tnal 2012/11/01
    勝手な想像では、単純にNNの階層/ニューロン数を増やしただけだとうまく抽象化/構造化して学習できないので、学習しやすくするような構造&学習方法を導入してみた。というような話なのかなと妄想。
  • PFIセミナーでテンソルについて話しました - Preferred Networks Research & Development

    はじめに 大野です。先日PFIセミナーでテンソルについてお話をしたので、それの宣伝を行いたいと思います。当日の様子は以下のリンクから閲覧できます:PFIセミナー(ustream)。また、スライドはSlideShareで公開しています PFIセミナーとは毎週木曜日の19:10ごろから行なっている公開社内セミナーです。週替わりで社員が興味を持っている分野について30分から1時間程度でプレゼンを行なっています。内容は技術的な内容(入門からディープなものまで)もありますが、それだけに限らず、契約、組織論、マネジメントなどの話も過去に行ったことがあります。セミナーの様子は録画しており、ustream上でのPFIのページで公開しています。今回自分に順番が回ってきたので、数学の道具の一つであるテンソルをテーマにお話をしました。 セミナーの内容 話した内容は次の通りです テンソルはベクトルや行列を一般化し

    PFIセミナーでテンソルについて話しました - Preferred Networks Research & Development
  • 大規模データ時代に求められる自然言語処理 - Preferred Networks Research & Development

    話の内容は、自然言語処理が実世界で具体的にどのように応用されているのか、またその時に感じた課題についてです。 後半の「何が必要とされているか」、あたりの話からは私や会社が特に重点的に取り組んでいる事そのものの話もなります。

    大規模データ時代に求められる自然言語処理 - Preferred Networks Research & Development
  • 博士公聴会:定数時間アルゴリズムについて | Preferred Research

    吉田です. 先日,博士論文の公聴会が終わりました. タイトルは「次数を制限したグラフと制約充足問題に対する定数時間アルゴリズムの研究」というものでした. また,博士課程での研究の成果が認められて,日学術振興会から育志賞という賞を頂くことになりました. こちらは他の受賞者の研究内容が分からなさ過ぎて凄いですね. 今後もPreferred Infrastructureにはアドバイザーの様な形で勤めることになると思いますので宜しくお願い致します. ということで博士課程の終わりも近く,良い区切りですので, これまで専門に研究してきた定数時間アルゴリズムについて簡単に話をすることにします. 定数時間アルゴリズムは,その名のとおり入力長に依存しない計算時間で動作するアルゴリズムのことです. 普通に考えてそんなアルゴリズムはあり得ないように思えますが,どうすればそんなアルゴリズムが実現出来るでしょうか

    博士公聴会:定数時間アルゴリズムについて | Preferred Research
  • 最速の疎ベクトルはどれだ - Preferred Networks Research & Development

    海野です。 自然言語処理などで機械学習を行おうとすると、非常に疎なベクトル表現を使いたくなります。疎、というのはほとんどの要素が0である、という意味です。前々から疎ベクトルライブラリのパフォーマンスに関して気になっていたので、幾つか調べてみました。 Jubatus Workshopでも話したとおり、機械学習を適用しようとすると、普通は対象のデータをベクトル表現に落とします。特に言語データの場合は、それぞれの単語や文字などを特徴次元とするため、非常に疎なベクトルとなってしまいます。純粋な配列(C++で言えばstd::vector)を使ってしまうと、大量にメモリをってしまうため疎ベクトル専用の表現を使うのが普通です。 今日は様々な疎ベクトルライブラリのパフォーマンス比較を行おうと思います。比較したライブラリは以下のとおり。真の意味で、疎ベクトルのライブラリは、Eigenとublasだけで、残

    最速の疎ベクトルはどれだ - Preferred Networks Research & Development
  • 専門知識の仕入れ方 - Preferred Networks Research & Development

    今日は,普段どのようにして専門知識を仕入れているかについて書いてみようと思います.特に自分が得意でない分野を知りたいと思った時に,どうするかに注目したいと思います.自分の専門の場合は,いくらでも時間を注ぐことが出来るので,世界中のリソースを全て探し当てて勉強すれば良いのですが,ちょっと興味が有るぐらいではそこまでやる時間は取れません.なので出来るだけ効率的に分かった気になるのが目標です. まず,論文を直接読むのはあまり効率的では無いと思います.論文は広い分野の中の或る問題に対して一つの解決方法を書いているだけで,分野全体を俯瞰することは目指していません.論文だけ読んで分野全体を理解するには,最低50ぐらい読む必要が有ると思います.

    専門知識の仕入れ方 - Preferred Networks Research & Development
    tnal
    tnal 2011/09/18
  • 1