Browse State-of-the-Art 11,969 benchmarks 5,160 tasks 144,007 papers with code
Browse State-of-the-Art 11,969 benchmarks 5,160 tasks 144,007 papers with code
It has attracted considerable attention to use crowdsourcing services to collect a large amount of labeled data for machine learning, since crowdsourcing services allow one to ask the general public to label data at very low cost through the Internet. The use of crowdsourcing has introduced a new challenge in machine learning, that is, coping with low quality of crowd-generated data. There have be
7/28 に行われた nokuno さん主催の ICML 2012 の論文読み会にのこのこ参加。お疲れ様でした&ありがとうございました>各位 「えーまたトピックモデルなの?(ぶーぶー)」とブーイングを浴びつつ、[Kim+ ICML12] Dirichlet Process with Mixed Random Measures を紹介してみた。発表資料はこちら。 [Kim+ ICML2012] Dirichlet Process with Mixed Random Measures : A Nonparametric Topic Model for Labeled Data from Shuyo Nakatani www.slideshare.net 論文では Stick Breaking Process と Polya Urn の2つでモデルを表現していたが、そのあとどうせ Gibbs s
機械学習やってる人は皆読むべきだと思う. Machine Learning that Matters (pdf) 概要 機械学習のトップカンファレンスICMLに数式/アルゴリズム/定理を1つも書かずに通った論文. 機械学習は何のために重要なのか,現実世界との繋がりを失っていないか,あなたは「機械学習って何の役に立つの?」と聞かれた時にちゃんと答えられるのか,まだ取り組まれてない重要な問題は何か,について触れた長文ブログのような論文. contributionsは 機械学習の研究と人類と科学全体におけるもっと大きな研究との間にある欠落に対する明確な特定と解説 そのギャップに取り組むための第一歩 (どう訳していいかわからなかった) 機械学習において重要な問題の提示 機械学習のための機械学習(要約: マッシュルームやアヤメの分類器を死ぬほど作って何の役に立ったの?) ベンチマークデータの問題 こ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く