機械学習の幅広い分野への応用が進むにつれ,機械学習がその予測の根拠などを理解できない「ブラックボックス」となることが問題視されており,機械学習の解釈性や説明性が注目されています.今回のテーマであるSHAP(SHapley Additive exPlanations)は,機械学習モデルへの特定の入力に対する予測の根拠を提示する代表的な手法の一つです.SHAPには用途に応じていくつかのアルゴリズムがありますが,その中でも今回はあらゆる機械学習モデルに適用可能(Model-Agnostic)なKernel SHAPという手法についてまとめました. 構成としては,まずKernel SHAPとは何かについての概要を述べた後に, Kernel SHAPを理解する上で必要な要素である「シャープレイ値」と「SHAP」について説明します.さいごに,Kernel SHAPについて「理論」と「実装」に分けて書い