If you are not redirected automatically, follow this link/a>.
If you are not redirected automatically, follow this link/a>.
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? この記事について Pythonでデータ分析を行う際に役立つセットアップを紹介します。 データ分析に興味がある方はこちらも合わせてどうぞ データサイエンティストに興味があるならまずこの辺りを見ておきな、って文献・動画のまとめ(随時追加) - Qiita 実行環境 Jupyter(旧iPython Notebook) http://jupyter.org/ インタラクティブ(対話的)なコード実行のための環境 データ分析に非常に適していて、慣れると他のIDEなどでは分析ができなくなる。 任意に分けたコードブロックごとに実行し、結果を都度表示出
今年の7月に開催されたSciPy2015の講演動画がEnthoughtのチャンネルで公開されている。今年も面白い講演が多いのでいろいろチェックしている。 今年の目標(2015/1/11)にPythonの機械学習ライブラリであるscikit-learnを使いこなすというのが入っているので、まずはscikit-learnのチュートリアルを一通り見ることにした。 Part IとPart IIを合わせると6時間以上あり非常に充実している。IPython Notebook形式の資料やデータは下記のGitHubアカウントで提供されている。ノートブックをダウンロードし、実際に手を動かしながらチュートリアルを進めると理解がより進むかもしれない。 あとで振り返りやすいように内容を簡単にまとめておきたい。 1.1 Introduction to Machine Learning 機械学習システムの流れ。教師あ
PRMLの11章で出てくるマルコフ連鎖モンテカルロ法(Markov chain Monte Carlo methods: MCMC)。ベイズでは必須と呼ばれる手法だけれどいまいち理屈もありがたみもよくわからなくて読み飛ばしていました。 最近、ボルツマンマシンを勉強していて、ベイズと関係ないのにマルコフ連鎖やらギブスサンプラーやらが出てきて本格的にわからなくなってきたのでここらで気合を入れて勉強し直すことにしました。 参考にした書籍は「Rによるモンテカルロ法入門」です。PRMLと同じく黄色い本なので難易度が高そう・・・この本はR言語を使って説明がされていますが、それをPythonで実装しなおしてみようかなーと計画中。numpy、scipyの知らなかった機能をたくさん使うので勉強になりそう。 ただRにしかないパッケージを使われると途中で挫折する可能性が高い・・・あと内容が難しすぎて途中で挫折す
NumPyとSciPyをGotoBLAS2を使ってbuildした時のメモ。ここの通りにやっても出来なかったのでいろいろ試行錯誤した残骸。環境は以下の通り。 Linux MInt 12 32bit (Ubuntu 11.10ベース) Core2 Quad gcc-4.6 ちなみに私は共有ライブラリだけでやっていますのでstaticライブラリも欲しい人は適当に修正してください。 また、事前に/usr/local/libにLD_LIBRARY_PATHを通しておいてください。 ldconfigも適宜実行。 2012-Feb-27 修正 * NumPyのsite.cfgの表記を修正 * LAPACKのbuildを修正 2012-Mar-26 * 誤字を修正 * LAPACKのbuildを修正 GotoBLAS2 Ubuntu 11.10以降からはOpenBLASというパッケージが配布されています。
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く