九州大学談話会「IMI Colloquium」 https://www.imi.kyushu-u.ac.jp/seminars/view/3001
勤務先の社内勉強会で、機械学習を用いた文書推薦*1に関する基本的なことがらについて説明しました。その資料を公開します。 プログラマのための文書推薦入門 from y-uti 数学やコンピュータサイエンスを専門的に学んでいないエンジニアでも理解しやすいように、できるだけ数式を使わずに説明したつもりです。厳密性にはこだわっていないので、専門家からはあちこちツッコミを受ける内容かもしれません。 プログラマ向けということで、実際にコンピュータ上で動作を確認できるように、Wikipedia のデータを対象にして類似文書検索を行うスクリプトを作成しました。GitHub に置いてあります。 y-uti/document-recommendation · GitHub *1:推薦というより情報検索、類似文書検索という方が適切だったかもしれません。
2013年 プログラマの為の数学勉強会 資料 第1回:イントロダクション 第2回:浮動小数点数・極限・微分 第3回:微分法の応用・多変数関数の微分法 第4回:微分法の応用(続き)・方程式の数値解法 第5回:微分方程式の数値解法・積分法 第6回:数値積分法・積分法の応用 第7回:行列・ベクトル・ガウス消去法 第8回:行列式・逆行列・連立一次方程式の直接解法 第9回:線型空間・線型写像・固有値固有ベクトル(その1) 第10回:線型変換・固有値固有ベクトル(その2)・内積空間 第11回:連立一次方程式の反復解法・二次形式・多変数関数の極値・重積分 第12回:確率論入門 第13回:情報量・エントロピー・重要な確率分布・大数の法則・中心極限定理 第14回:擬似乱数の生成法・推定 第15回:検定 第16回:検定の続き, 回帰分析 第17回:回帰分析の続き 第18回:ベイズ統計
ニュースアプリSmartNews(https://www.smartnews.be/)の背景のアルゴリズムについてTokyoWebMining30th(http://tokyowebmining30.eventbrite.com/)で話させていただいた際の資料です。 •SmartNews iphone版: https://itunes.apple.com/jp/app/id579581125 •SmartNews Android版 https://play.google.com/store/apps/details?id=jp.gocro.smartnews.android •SmartNews開発者ブログ http://developer.smartnews.be/blog/Read less
ちょっと前に「4人のロシア人の方法(Method of Four Russians)」というのを論文で見かけて面白かったので紹介しておく。 簡単に言ってしまうと、ある処理を高速化したい時にデータ全体を小さなブロックに分割してブロック単位での結果を事前に計算したテーブルで持っておくよ、というアルゴリズム。 名前は知らなくてもアルゴリズム自体は知ってる人は多いかもしれない。 Method of Four Russians - Wikipedia, the free encyclopedia アルゴリズム自体は汎用的なものだが編集距離の高速化を例として説明するのが一般的なようなのでそれに倣う。 文章で書くとごちゃごちゃするのでスライドで。もっふる。 http://www.scribd.com/doc/94190119/MoFR ※追記:↑のスライド、正直自分でもわかりやすいとは思えないので余裕が
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く