タグ

統計とmathに関するurza358のブックマーク (4)

  • 23-3. 有意水準と検出力 - 統計WEB

    ■有意水準 有意水準は、検定において帰無仮説を設定したときにその帰無仮説を棄却する基準となる確率のことです。(アルファ)で表され、5%(0.05)や1%(0.01)といった値がよく使われます。有意水準は検定を行う前に設定しておきます。 有意水準を0.05に設定するということは、「5%以下の確率で起こる事象は、100回に5回以下しか起こらない事象だ。したがってこのようなまれな事象が起こった場合、偶然起こったものではないとしてしまおう」という意味です。したがって、P値が0.05(5%)を下回った場合、そのP値は偶然取る値ではないと結論付けられます。言い換えると、「極めて珍しいことが起こった」あるいは「何かしら意味があることである(=”有意である”)」ということを表します。 しかし、P値が5%以下となったとしても当に偶然まれな事象が起こった場合もあるので、有意水準は「当は帰無仮説が正しいのに

    23-3. 有意水準と検出力 - 統計WEB
  • モンティ・ホール問題 - Wikipedia

    モンティ・ホール問題 閉まった3つのドアのうち、当たりは1つ。プレーヤーが1つのドアを選択したあと、例示のように外れのドアが1つ開放される。残り2枚の当たりの確率は直感的にはそれぞれ 1/2(50%)になるように思えるが、はたしてそれは正しいだろうか。 モンティ・ホール問題(モンティ・ホールもんだい、英: Monty Hall problem)とは、確率論の問題で、ベイズの定理における事後確率、あるいは主観確率の例題の一つとなっている。モンティ・ホール(英語版)(Monty Hall, 名:Monte Halperin)が司会者を務めるアメリカゲームショー番組、「Let's make a deal(英語版)[注釈 1]」の中で行われたゲームに関する論争に由来する。一種の心理トリックになっており、確率論から導かれる結果を説明されても、なお納得しない者が少なくないことから、モンティ・ホール

    モンティ・ホール問題 - Wikipedia
  • 主座標分析について簡単に紹介するよ! - ほくそ笑む

    今日は主座標分析(Principal Coordinate Analysis; PCoA)の紹介を簡単にしたいと思います。 主座標分析は古典的多次元尺度構成法(Classical Multidimensional Scaling; CMDS)とも呼ばれる統計解析手法です。 この解析手法を使用する主な目的は、高次元のデータを2次元や3次元に落として視覚化したいという時に使います。 以前紹介した主成分分析と同じような感じですね。*1 主成分分析との違いを簡単に言うと、主成分分析はユークリッド距離をなるべく保ちながら低次元に落とす方法ですが、主座標分析はユークリッド距離だけでなく、他の距離や類似度*2が使えるという点にあります。 例えば、ユークリッド距離の代わりに相関係数を使えば、相関の高いもの同士が近い配置になるようなプロットを作ることが可能です。 データを用意する さっそくやってみたいのです

    主座標分析について簡単に紹介するよ! - ほくそ笑む
  • Amazon.co.jp: カオスと偶然の数学: ランダムネス、確率、そして複雑性へ: アイヴァースピーターソン (著), 紀雄,今野 (翻訳), 佐良人,高橋 (翻訳), Peterson,Ivars (原名): 本

    Amazon.co.jp: カオスと偶然の数学: ランダムネス、確率、そして複雑性へ: アイヴァースピーターソン (著), 紀雄,今野 (翻訳), 佐良人,高橋 (翻訳), Peterson,Ivars (原名): 本
  • 1