タグ

ragとllmに関するvine_hateのブックマーク (17)

  • RAGに関する主要な論文を時系列順にまとめていく(2024年度版)|R

    RAGに関する主要な論文まとめていきます。(過去の分含めて随時更新予定) 見つけたものからまとめているので、最新の2024年以降の論文多めです。 Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks(22/05/2022) 一言紹介❓ LLMって、事前学習された知識に関しては答えてくれるけど、最新のニュースだったり、専門的な情報や組織固有の情報には対応できないよなぁ 💡 外部知識をLLMに検索させよう!→RAGの誕生 Abstract日語訳大規模な事前学習済み言語モデルは、そのパラメータに事実知識を蓄積し、下流の自然言語処理(NLP)タスクに微調整されたときに最先端の成果を達成することが示されています。しかし、知識をアクセスして正確に操作する能力は依然として限られており、知識集約型タスクでは、タスク固有のアーキ

    RAGに関する主要な論文を時系列順にまとめていく(2024年度版)|R
  • Graph RAGでRAGの精度向上を - Qiita

    記事は日オラクルが運営する下記Meetupで発表予定の内容になります。発表までに今後、内容は予告なく変更される可能性があることをあらかじめご了承ください。 以前の記事:【ChatGPT】とベクトルデータベースによる企業内データの活用(いわゆるRAG構成)ではベクトルデータベースを利用したRAGの実装をご紹介しました。LLMが学習していないデータ(社内ドキュメントなど)をベクトルデータベースにロードし、LLMがそのデータを「参照」しながらユーザーのプロンプトに回答するシステムで、処理フローとして下図のようになります。 ①ユーザープロンプトの文章と類似の文章をベクトルデータベースに問い合わせる ②ベクトルデータベースの中からテキスト生成に必要なヒントとなる文章(RAGではコンテキスト(context)と呼ぶ)をベクトル類似検索処理で検索する ③ユーザープロンプトに加えて、検索したテキストを

    Graph RAGでRAGの精度向上を - Qiita
  • RAGを使った企業独自の情報に基づいた文書生成AI:募集要項の事例|Algomatic

    はじめに企業における生成AI活用の代表的な要望として、企業独自の情報に基づいた文書生成が注目を集めています。記事では、過去の募集要項(JD)を参照しながら、ユーザーとインタラクティブに募集要項を作成できるチャットボットをご紹介いたします。このツールはRetrieval-Augumented Generation(RAG)技術を活用しChatGPTのような汎用AIでは難しかった、企業独自の情報を反映した文書生成を可能にします。 既存の募集要項作成業務における課題企業における資料作成は多くの時間と労力を要する重要な業務の一つです。とくに、募集要項の作成はその典型的な例として挙げられます。人材採用に力を入れている企業では、それに伴い募集要項を頻繁に作成する必要があります。募集要項は求める人材のスキルセット、経験、責任範囲を明確に定義する重要な文書です。しかし、その作成の過程には3つの課題が存在

    RAGを使った企業独自の情報に基づいた文書生成AI:募集要項の事例|Algomatic
  • あらゆる分野のRAGの性能を評価する手法RAGEval

    導入 こんにちは、株式会社ナレッジセンスの須藤英寿です。普段はエンジニアとして、LLMを使用したチャットのサービスを提供しており、とりわけRAGシステムの改善は日々の課題になっています。 記事では、ドメインに特化したRAGの性能を検証するためのフレームワーク、RAGEvalについて解説します。 サマリー RAGの手法は日夜研究され、新しい手法は次々に提案されています。RAGに限った話ではないですが、システムの性能を計測するには評価するための方法が重要です。そしてRAGの性能を計測するにはドキュメントと質問、そして正解ドキュメントと正答のセットが必要になります。 RAGEvalは、これらの計測に必要なデータをLLMとそのドメインに使用するサンプルのドキュメントを用いて自動的に生成する事が可能となっています。 問題意識 RAGのテストデータを用意するのは大変 RAGの評価には必ず評価するため

    あらゆる分野のRAGの性能を評価する手法RAGEval
  • RAGのGが必要か不要かに関する一考察 | DevelopersIO

    まとめ RAGにおける回答生成が必要か不要かに関して考えました。業務面・技術面・環境面を整理して判断するのが良さそうです。また、情報検索のみで良いのかという点について、回答生成以外の要素も含めて考えてみました。 はじめに 新規事業部 山です。 ChatGPTOpenAI API)をはじめとしたAIの言語モデル(Large Language Model:以下、LLM)を使用して、チャットボットを構築するケースが増えています。通常、LLMが学習したときのデータに含まれている内容以外に関する質問には回答ができません。そのため、例えば社内システムに関するチャットボットを作成しようとしても、素のLLMでは質問に対してわからないという回答や異なる知識に基づいた回答が(当然ながら)得られてしまいます。 この問題を解決する方法として、Retrieval Augmented Generation(以下、

    RAGのGが必要か不要かに関する一考察 | DevelopersIO
  • LLM From the Trenches: 10 Lessons Learned Operationalizing Models at GoDaddy

    Copy linkShare "LLM From the Trenches: 10 Lessons Learned Operationalizing Models at GoDaddy" on FacebookShare "LLM From the Trenches: 10 Lessons Learned Operationalizing Models at GoDaddy" on XShare "LLM From the Trenches: 10 Lessons Learned Operationalizing Models at GoDaddy" on LinkedInShare "LLM From the Trenches: 10 Lessons Learned Operationalizing Models at GoDaddy" on Pinterest GoDaddy has

    LLM From the Trenches: 10 Lessons Learned Operationalizing Models at GoDaddy
  • [翻訳]LLMで1年間開発して学んだこと〜LLMプロダクト開発を成功に導くための実践的ガイド〜

    この記事は "What We’ve Learned From A Year of Building with LLMs" という記事を著者の一人である Eugene Yan さんから許可を得て翻訳したものです。 https://applied-llms.org/ Thank you for giving me a permission to translate this wonderful article! 著者の方々 Eugene Yan Bryan Bischof Charles Frye Hamel Husain Jason Liu Shreya Shankar 原文の公開日 2024/6/8 今は大規模言語モデル(LLM)を使った開発がとってもエキサイティングな時期です。この1年間で、LLMは実世界のアプリケーションに対して「十分に良い」ものになりました。そして、年々良くなり、安く

    [翻訳]LLMで1年間開発して学んだこと〜LLMプロダクト開発を成功に導くための実践的ガイド〜
  • Arxiv RAGによる論文サーベイの自動生成 | Shikoan's ML Blog

    複数のLLM(GPT/Claude3)とArxivの検索APIをRAGで統合し、論文サーベイの自動生成を作りました。検索結果の前処理や、サーベイ特有のプロンプトエンジニアリングやソートが重要で、最適化手法として古くからある巡回セールスマン問題(TSP)が有効に機能しました。また、生成部分ではGPTよりClaude3の明確な有効性を確認できました。 できたもの Arxivの検索APIを使って検索拡張生成(RAG)したらサーベイを自動生成できた やっていること Arxivの検索ワードをGPT-4-Turboで生成 ArxivのAPIを叩いてヒューリスティックでフィルタリング OpenAIEmbedding APIを叩く Embeddingに対して巡回セールスマン問題(TSP)を解いてソートをかける 論文の要旨をGPT-3.5-Turboで要約 ソートした要約結果をClaude3 Sonnet

    Arxiv RAGによる論文サーベイの自動生成 | Shikoan's ML Blog
  • Azure AI Searchを使った同義語によるクエリ拡張とその効果 - Ahogrammer

    PythonからAzure AI Searchのシノニムマップを作成し、クエリ拡張をして、その効果を日語の質問応答データセットで確認してみました。昔からある機能で、とくに何か新しいことをしているわけでもないのですが、使いそうな機会があったので試してみました。 記事の構成は以下のとおりです。 シノニムマップ シノニムマップの作成 インデックスの作成 実験設定 実験結果 参考資料 シノニムマップ 記法は、Apache SolrのSynonymFilterの仕様に準拠しています[1]。Solrのドキュメントを読む限り、現在ではSynonymFilterは非推奨で、代わりにSynonymGraphFilterを使うことが推奨されていますが、為す術もないのでそのまま使います。2つの違いについては[2]がわかりやすいです。SynonymFilterでは、以下の2種類の規則をサポートしています。 同

    Azure AI Searchを使った同義語によるクエリ拡張とその効果 - Ahogrammer
  • Ahogrammer

    RAG(Retrieval Augmented Generation)は大規模言語モデル(LLM)の性能を改善するための手法の1つであり、質問に対する回答を生成する際に、外部知識源から情報を取り込みます。 これにより、LLM 自体で学習できる情報量に制限されることなく、より正確で詳細な回答を生成することができます。 よく使われているRAGでは、外部知識源として検索エンジンにテキストをインデックスしておき、質問に関連するテキストをベクトル検索や全文検索を用いて取得します。しかし、構造化データを扱うことには苦労するため、質問によっては回答が不十分、あるいはまったく回答できないことに繋がります。 これらの問題を克服するために、ナレッジグラフを用いたRAGが構築されることがあります。ナレッジグラフでは、エンティティとその間の関係がグラフ構造で表現されており、単純な検索を用いた場合には回答できないよ

    Ahogrammer
  • オープンな日本語埋め込みモデルの選択肢 / Exploring Publicly Available Japanese Embedding Models

    イノベーションセンター テクノロジー部門 Generative AI PJ の内部勉強会で発表した資料です。Retrieval-Augmented Generation (RAG) において重要な役割を果たす埋め込みモデル(特に日語に特化したもの)について整理しました。

    オープンな日本語埋め込みモデルの選択肢 / Exploring Publicly Available Japanese Embedding Models
  • RAGの性能を改善するための8つの戦略 | Fintan

    近年、OpenAIのGPT-4やGoogleのGemini、MetaのLLaMAをはじめとする大規模言語モデル(Large Language Model:LLM)の能力が大幅に向上し、自然言語処理において優れた結果を収めています[1][2][3]。これらのLLMは、膨大な量のテキストデータで学習されており、さまざまな自然言語処理タスクにおいて、タスクに固有なデータを用いてモデルをファインチューニングすることなく、より正確で自然なテキスト生成や、複雑な質問への回答が可能となっています。 LLM-jp-eval[4]およびMT-bench-jp[5]を用いた日語LLMの評価結果。Nejumi LLMリーダーボード Neoより取得。 大規模言語モデルは近年急速な進歩を遂げていますが、これらの進歩にもかかわらず、裏付けのない情報や矛盾した内容を生成する点においては依然として課題があります。たとえ

    RAGの性能を改善するための8つの戦略 | Fintan
  • 【2024年】チャットボットのおすすめ10ツール(全101製品)を徹底比較!満足度や機能での絞り込みも

    【2024年】チャットボットのおすすめ10ツール(全101製品)を徹底比較!満足度や機能での絞り込みも チャットボットとは、ユーザーとテキストベースで会話を行うプログラムのことです。チャットボットは、メッセンジャーアプリやウェブサイト上で動作し、ユーザーからの質問や要求に自動で応答します。 チャットボットの主な機能は、ユーザーの入力を解析し、適切な情報を提供することです。あらかじめ用意された知識ベースや、外部のデータソースと連携することで、ユーザーのニーズに合った回答を返すことができます。 また、チャットボットはユーザーとの対話を通じて、ユーザーの行動や嗜好に関するデータを収集することも可能です。収集したデータを分析することで、ユーザーのニーズをより深く理解し、一人ひとりに合わせたサービスの提供につなげることができます。 近年、チャットボットは様々な業界で活用され、顧客サポートや販売促進、

    【2024年】チャットボットのおすすめ10ツール(全101製品)を徹底比較!満足度や機能での絞り込みも
  • RAGの課題と精度改善のための発展的なアプローチまとめ | Hakky Handbook

    Hakkyでは「データでプロダクトを価値あるものにする」というミッションの元、大規模言語モデルを積極的に活用して記事執筆しております。ビジネスにおけるAI活用のため、Handbookをお役立ていただきましたら幸いです。 はじめに​ 記事では、RAG (Retrieval-Augmented Generation) の精度改善に焦点を当てて、一般的に行われている RAG の問題点と、それらを解決するために LangChain が提案した発展的な RAG の概要について紹介します。 また、記事はlanghchain の開発ブログを参考にしています。 RAG とは​ RAG(Retrieval-Augmented Generation)は、情報の検索(Retrieval)と生成(Generation)を組み合わせることで、よりコンテキストに基づいた回答を可能にするためのアーキテクチャです。

  • ⼤規模⾔語モデルの拡張(RAG)が 終わったかも知れない件について

    Constrained K-means Clustering (クラスタサイズの制限をしたK-means法) を調べてみた

    ⼤規模⾔語モデルの拡張(RAG)が 終わったかも知れない件について
  • インターンでRAGシステムの検索エンジンの改善をおこないました - Uzabase for Engineers

    UB Researchチームで2週間の短期インターンをしている梶川です。 現在、UB ResearchではRAGシステム構築に向けた研究を行っており、社内のさまざまなデータを正確に拾い上げるための検索エンジンの開発と評価を行っています。 今回、その検索エンジンに代わるモデルを用いて、実際の検索テキストで検索を実施した結果を報告します。 概要 近年、LLMを用いた文書生成が流行しており、その中でも外部情報を検索し、LLMに追加して生成させるRAGという技術が活用されています。RAGによって、LLMが知らない情報に対して正確な応答を返すことができ、UB Researchでもニュース記事や有価証券報告書などの情報に対してRAGを適用することを考えています。既存の検索エンジンには、国内データで学習されたBERTベースのモデルを用いていますが、今回、最新のモデルであるBGE-M3を用いて、検索を実施

    インターンでRAGシステムの検索エンジンの改善をおこないました - Uzabase for Engineers
  • Building RAG-based LLM Applications for Production

    [ GitHubNotebook | Anyscale Endpoints | Ray Docs]  · 55 min read Note: Check out the new evaluation reports and cost analysis with mixtral-8x7b-instruct-v0.1 and our data flywheel workflow to continuously improve our RAG applications. In this guide, we will learn how to: 💻 Develop a retrieval augmented generation (RAG) based LLM application from scratch. 🚀 Scale the major workloads (load, ch

    Building RAG-based LLM Applications for Production
  • 1