0. はじめに: クォータニオンについて思うこと はじめまして! NTTデータ数理システムで機械学習やアルゴリズムといった分野のリサーチャーをしている大槻 (通称、けんちょん) です。 本記事は、東京大学航空宇宙工学科/専攻 Advent Calendar 2018 の 3 日目の記事として書きました。僕は学部時代を工学部 航空宇宙工学科で過ごし、情報理工学系研究科 数理情報学専攻で修士取得後、現職に就いて数年になります。 航空宇宙時代は人工衛星の姿勢制御について関心を抱き、特に磁気センサや磁気トルカを用いた姿勢制御系について研究していました。数理工学へと分野を変えてからも、当時お世話になった先輩方と磁気トルカを用いた姿勢制御手法について共同研究して論文を書いたり、ディープラーニングなどを用いた画像認識技術を追求する過程ではリモートセンシングに関する話題ものぼったりなど、航空宇宙業界とは何
In this article I will attempt to explain the concept of Quaternions in an easy to understand way. I will explain how you might visualize a Quaternion as well as explain the different operations that can be applied to quaternions. I will also compare applications of matrices, euler angles, and quaternions and try to explain when you would want to use quaternions instead of Euler angles or matrices
As the quality of games has improved, more attention has been given to all aspects of a game to increase the feeling of reality during gameplay and distinguish it from its competitors. Mathematics provides much of the groundwork for this improvement in realism. And a large part of this improvement is due to the addition of physical simulation. Creating such a simulation may appear to be a daunting
This Sliding Bar can be switched on or off in theme options, and can take any widget you throw at it or even fill it with your custom HTML Code. Its perfect for grabbing the attention of your viewers. Choose between 1, 2, 3 or 4 columns, set the background color, widget divider color, activate transparency, a top border or fully disable it on desktop and mobile. This Sliding Bar can be switched on
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く