タグ

物理に関するyotinakkのブックマーク (7)

  • ヒッグス粒子ってなあに?

    このファイルは 高校生程度の知識を持っている人向けに、図とアニメーションで「ヒッグス粒子って何なのか、を雰囲気だけでも理解してもらおう、という意図で作りました。 数式などは使っていませんが、 ヒッグス粒子って何なのか、を理解するために必要なのは、 です。実はこれは、数式を操って物理を理解することよりもずっとずっと難しいことかもしれません。 では、その1から挑戦をはじめましょう。 なお、ファイル中で このような枠と緑の字で示したのは実際にこのファイルを元に講演した時に出た質問 であり、 このような枠と赤の字で示したのはそれに対する答 です(ただし、質問も答も実際のままではなく、編集してあります)。 android(2.1以上)をお持ちの方は、アプリ化したもの(apkファイル)を右のアイコンからダウンロードできます(apkファイルには、Q&Aの部分は入っていません)。 プログラムについて御質問

  • 鉄とヒ素から広がる夢の世界 | Chem-Station (ケムステ)

    東工大の細野秀雄教授が2013年、トムソンロイター賞を受賞いたしました。受賞は物理学としてですが、酸化物は物理と化学の境界領域の一つで、ノーベル化学賞を受賞する可能性も十分にあります。そこで、細野先生の何がスゴイかを説明してみたいと思います。 現代の生活は、幸せで快適な生活が実現されていると言っても過言ではないでしょう。しかし、100年後の世界を一変させる可能性のある技術がいくつかあります。 そのうちの一つが「常温超伝導」の実現です。 どんなに電気を良く流す金属を使っても、ある程度抵抗があり、それによるエネルギーのロスは常に発生しています。日の発電所で作られる電力の4.8%は電線の中で抵抗によりロスし、熱として大気中に放出されているそうです。 もし超伝導体で電線を作ることが出来れば電線でのロスを無くすことができ、細いケーブルに大電流を流すことが出来る可能性があるなど、大きなメリットがあり

    yotinakk
    yotinakk 2013/10/01
    鉄ヒ素系
  • CERNが光速超える粒子発見!アインシュタインの相対性理論ピーンチ!

    CERNが光速超える粒子発見!アインシュタインの相対性理論ピーンチ!2011.09.23 10:2910,190 satomi 天地が引っくり返る大ニュース! 欧州原子核研究機構(CERN)がニュートリノをイタリアに飛ばしたら、なんと1万6000個が光速より速く到着してしまったそうですよ!! これが当なら「宇宙には光速より速く移動できるものは存在しない」とアルベルト・アインシュタインが1905年に提唱した特殊相対性理論が打ち破られ、物理を塗り替える革命となります。 実験では素粒子ニュートリノをジュネーブにあるCERNの研究所から地下経由で732km先の伊グラン・サッソ国立研究所に発射しました。すると2.43ミリ秒後に到着。このヒットした時間の記録は国際研究実験OPERA(Oscillation Project with Emulsion-tRacking Apparatus)の粒子検出器

    CERNが光速超える粒子発見!アインシュタインの相対性理論ピーンチ!
  • ファインマンの講義ビデオ、Microsoft ResearchのWebサイトで無償公開中 | スラド サイエンス

    Microsoft Researchとビル・ゲイツ氏が、物理学者リチャード・P・ファインマン博士の講義ビデオをMicrosoft ResearchのWebサイトで無償公開すると発表した(プレスリリース、ビデオを公開しているProject Tuva)。 日経ITproによると、ビル・ゲイツ氏はファインマン博士の講義を「これまで聞いた中で最高の講義に数えられる」とし、個人的に7つの講義ビデオの権利を買い取ったという。 なお、動画の閲覧にはSilverlightが必要。

  • 近くに磁石置くだけで発電「スピン起電力」…東大チーム : 科学 : YOMIURI ONLINE(読売新聞)

    磁石をそばに置くだけで電気が起きる――そんな簡単な発電の仕組みを、東京大の田中雅明教授らのチームが超微細技術を駆使して世界で初めて実現した。 この仕組みは「スピン起電力」と呼ばれ、磁気センサーや超小型電子機器の電源などに応用が可能という。 8日付の英科学誌ネイチャーの電子版で発表した。従来、磁気で電気を起こすには、発電機のように、電線を幾重にも巻いたコイルの近くで磁石を動かし、磁場を変化させる必要があった。 田中教授らは、磁石を動かさなくてもすむ方法を研究。小さな磁石のように振る舞う電子の性質(スピン)に着目した。 田中教授らは、ガリウムやヒ素、マンガンなどを材料にして、特定の向きのスピンを持つ電子だけが出入りできるような微細な磁石の粒を素子の中に作り、強めの永久磁石に相当する磁場の中に置いた。 すると、21ミリ・ボルトの電圧が発生した。実験時の温度は、零下270度近辺と極めて低いが、半導

  • 物理地獄

    更新履歴 2004年11月20日 「電磁気問題集」「なぜオイラーの公式?」を作り直した 2004年5月27日 「制御工学」を作成 2004年4月30日 「解析力学 new!」を作成 2004年2月27日 「統計力学」に「量子統計の例」「黒体放射から作用量子まで」を追加 2004年2月25日 「統計力学」に「統計力学の手法」を追加 2004年2月21日 「電子物性」に「電子輸送減少」を追加し、「静電気」を作り直した 2004年2月 5日 「静電気」を作成 2003年12月31日 「電子物性」を作成 2003年12月10日 高校物理に「電磁気Part1」を追加 2003年11月18日 熱力学に「熱サイクル」を追加 2003年10月 6日 「高校生向け物理」を作成 2003年8月19日 「統計物理」を更新 2003年8月 5日 「電気回路」を作る 2003年7月15日 

  • なぜ「大してうれしくない」か - 白のカピバラの逆極限 S.144-3

    今年、南部先生、小林先生、益川先生がノーベル賞に輝かれた。 そのニュースを実験室で知り「おお、このメンバーなら誰も文句がつけられない。つけられるとしたら遅かったことくらいだ。」と思った。ただ、組み合わせが少し妙なので「何で?」と思い、確認すると「自発的対称性の破れ」とある。なるほど〜。 しかし、これは難しい。特に南部先生の業績は説明できる気がしない、というかそれ以前に説明できるほどきちんと分かっている自信がない*1、笑。実際にテレビ局から電話がかかってきた。私はにやりと笑ってこういった。「おう、おまえか。言いたいことは分かる。だが、これは相当難しいぜ。」ざっと説明するが頭を抱える彼。「明日の朝までに、また聞きなおすよ。」 集まり NHK のニュースをみる。いかにも分かってそうな顔で「自発破れ」といっているのがちょっと面白かった。 そして、問題の益川先生の発言である。 「いや、大してうれしく

    なぜ「大してうれしくない」か - 白のカピバラの逆極限 S.144-3
    yotinakk
    yotinakk 2008/10/11
    "足利尊氏"そういうことなんですね。わかりました。
  • 1