Decision-making involves understanding how different variables affect each other and predicting the outcome when some of them are changed to new values. For instance, given an outcome variable, one may be interested in determining how a potential action(s) may affect it, understanding what led to its current value, or simulate what would happen if some variables are changed. Answering such questio
機械学習など主に予測を目的とした統計手法に強いイメージのPythonでしたが、統計的因果推論を行うためのライブラリ、“DoWhy”がついにリリースされました。 DoWhy | Making causal inference easy — DoWhy | Making Causal Inference Easy documentation これまで因果推論があまり浸透してこなかった*1データサイエンス界に新しい風が吹くのではと期待が高まります。 一方でこのパッケージが何を可能にし、逆に何ができないのかを理解しなければ、雑なデータ分析が増えて逆に有害なのではと思い、今回ブログを書くことにしました。 先に言っておくと、私自身はPythonをメインに使っているわけではありません(使ったことはあるので一応コードを読んで何が起こっているかくらいはわかります)。したがって本記事の目的は、DoWhyライブ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く