ジョゼフ・リウヴィルは初等関数を次のように定義した。多項式を第 0 級初等関数、指数関数 ez と対数関数 log(z) を第 1 級初等関数、両者をあわせて、たかだか第 1 級初等関数と呼ぶ。以下、関数の合成を行うことで、たかだか第 n 級初等関数を帰納的に構成できる。たかだか第 n 級初等関数であって、たかだか第 n−1 級初等関数でないものを、第 n 級初等関数と呼ぶ。 多項式関数: 多項式は不定元のべきの定数倍と、それらの和のみからなり、不定元への値の代入が関数を定める。べき関数とも呼ばれる。多項式の次数 n により 「n 次関数」のようにも呼ばれる。 一次関数 二次関数 三次関数 有理関数: 多項式の商で与えられる関数。分数関数、代数関数とも。 平方根: 二乗すると与えられた数になるような数を返す。 立方根: 三乗すると与えられた数になるような数を返す。 指数関数: ある定数の冪