t検定の仮定 本来,t検定には,さまざまな仮定が伴うものである。 各群の標本が,いずれも正規母集団から得られたものであること(正規性) 各群の母分散が等しいこと(等分散性) したがって,t検定の実施に先立って,これらの仮定が成り立つかどうかを判断しなければならない。 そのために,正規性と等分散性について,それぞれ異なる検定を行う必要がある。 正規性の検定 2群のデータの分布が,正規分布に従うかどうかを検定する。 この目的には,Kolmogorov-Smirnov(コロモゴロフ・スミノフ)検定がよく用いられる。 Rでは,この頭文字をとって ks.test() という名前の関数が用意されている。 この検定の帰無仮説は「あるデータが,正規分布をなす」である。 したがって,P値が大きければ,正規分布であると判断できる。 > ks.test(x$A,"pnorm",mean=mean(x$A),sd