タグ

dbとserverに関するHoriuchi_Hのブックマーク (2)

  • memcached活用は、格納オブジェクトの”粒度”がキモ

    最近じゃmemcachedを活用してデータベース(RDB)の負荷を下げるって話、そこらじゅうから聞こえてくるけれど、memcachedの活用は、格納オブジェクトの”粒度”(granularity)がキモだと思ってます。 memcachedは、KeyとDataをペアで格納して、Keyが与えられると、関連付けられたDataを返すだけのシンプルなシステム。PerlPHPの連想配列と同じ。このmemcachedをRDBのキャッシュとして活用してやる場合、memcachedに格納するキャッシュデータの単位、”粒度”をどう設計するかが重要になってくる。 RDBの場合、格納されるデータはRow(レコード)単位。じゃぁキャッシュもRow単位で作ってやればいいのかといえば、それではうまくいかないケースもたくさんある。RDBでは専用の問い合わせ言語であるSQLを使って、 SELECT * FROM hoge

    memcached活用は、格納オブジェクトの”粒度”がキモ
  • 「はてな流大規模データ処理」を見てきた - もぎゃろぐ

    KOF2008:関西オープンソース2008というイベントに来ています。 はてなの伊藤さんの講演があったので、講演メモを公開。 #ボクがメモした内容であって、100%言ったとおりに書いてあるわけじゃないので、参考としてご覧ください。 (続き) アジェンダ 大規模なデータ OSのキャッシュ MySQLの運用 大規模データアプリケーションの開発 データの例 はてなブックマークのデータ量:五千万件くらいのデータ量 このデータに対して何百万人がアクセスしてくる状況でどういう作りにするか レコード数 1073万エントリー 3134万エントリー 4143万タグ データサイズ エントリー2.5GB 何の工夫もなく普通にアクセスすると...200秒待っても結果が帰ってこない 大規模データの難しいところ 開発サーバで開発者が作っている時は快適に動いていても、多数の人間がアク

  • 1