一般的に、時系列データを扱うタスクでは過去のデータを使って未来のデータを予測することになる。 そのため、交差検証するときも過去のデータを使ってモデルを学習させた上で未来のデータを使って検証しなければいけない。 もし、未来のデータがモデルの学習データに混入すると、本来は利用できないデータにもとづいた楽観的な予測が得られてしまう。 今回は、そんな時系列データの交差検証と scikit-learn の TimeSeriesSplit の改良について書いてみる。 使った環境は次のとおり。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.14.6 BuildVersion: 18G3020 $ python -V Python 3.8.1 下準備 あらかじめ、必要なパッケージをインストールしておく。 $ pip install scikit-le