タグ

MLとcrfに関するZAORIKUのブックマーク (2)

  • マルコフ確率場 (MRF) と条件付き確率場 (CRF) の違い | LESS IS MORE

    一番の違いは、生成モデルか識別モデルか、ということ。それぞれ、 Markov Random Fields (MRF) は生成モデル Conditional Random Fields (CRF) は識別モデル です。 What is exactly the difference between MRF and CRF ここを見ると割とすっきりする。 ただ、少しスムーズに納得できないことがありまして…それは、MRFもCRFもグラフィカルモデルで書くと無向グラフとなること。識別モデルは無向グラフで生成モデルは有向グラフなんじゃ…?と思ってしまう人もいるんじゃないかと思う(いなかったらごめんなさい)。 グラフィカルモデルとしての表現 一般に、生成モデルは有向グラフの形で記述され、識別モデルは無向グラフとして記述される。例えば、隠れマルコフモデル (HMM) は有向グラフで、条件付き確率場 (CR

    マルコフ確率場 (MRF) と条件付き確率場 (CRF) の違い | LESS IS MORE
  • rinko2010

    3. 4 [Lafferty+, 01] Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. John Lafferty, Andrew McCallum, Fernando Pereira. Proceedings of ICML’01, 2001. [Collins, 02] Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. Michael Collins. Proceedings of EMNLP’02, 2002. [Morency+, 07] Latent-dynamic discrim

    rinko2010
  • 1