タグ

algorithmとprogrammingに関するbayashi_netのブックマーク (24)

  • 差分検出アルゴリズム三種盛り - Object.create(null)

    こんばんは. 気がつけばもうずいぶんと涼しくなってきました. 勢い余って凍ってしまったりせぬよう, くれぐれも普段の言動にはお気をつけください. はじめに さて, 我々人類にはどうしても二つの文字列 (あるいは行ごとに区切られたテキスト) 間の差分を求めなければいけない瞬間が発生します. 先人たちはそういった時のために diff のようなツールを開発し, それを利用することで文明はめざましい発展を遂げてきました. しかしながら, 使用するアルゴリズムを比較検討したい場合, 「差分」の定義を変えるなどして既存のアルゴリズムに変更を加えたい場合, diff のない異世界に飛ばされて自分で実装しなければいけない時などにおいては, 差分検出アルゴリズムについての理解が必要不可欠です. というわけで, この記事では文字列間の差分検出とは何かということと, 差分を求める三種類のアルゴリズムの紹介・解説

    差分検出アルゴリズム三種盛り - Object.create(null)
  • どうぶつしょうぎ名人 - まめめも

    どうぶつしょうぎ AI を作りました。絶対に勝てません。無力感を味わってください。 ref: http://mame.github.io/dobutsu-shogi-master どうぶつしょうぎとは 3 マス x 4 マスの単純化された将棋です。ライオン(王相当)、ぞう(1 マスしか進めない角行)、キリン(1 マスしか進めない飛車)、ひよこ(歩相当、にわとりに成ったら金相当)の 4 種類の駒を動かして、相手のライオンを取るか、トライ(ライオンを一番奥の行まで運ぶ、ただし直後に取られる場合はだめ)に成功すれば勝ちです。詳しくは Wikipedia の記事を見てください。 どうぶつしょうぎは後手必勝であることが知られています(研究報告)。つまり、後手が正しくプレイする限り、先手は絶対に勝てません。どうぶつしょうぎ名人は常に正しくプレイするので、先手のあなたは絶対に勝てません。 なんで作ったの

    どうぶつしょうぎ名人 - まめめも
  • 電王・Ponanza開発者が語る、理由がわからないけどスゴイ“怠惰な並列化”

    皆さんこんにちは。 私は将棋プログラム「Ponanza」の作者、山一成と申します。Ponanzaは初めてプロ棋士を破った将棋プログラムで、近年最も強い将棋プログラムと言えると思われます。また、2017年もトッププロ棋士の方と対局することが予定されています。Ponazaの改良のための機械学習に現在ジサトライッペイさんのPC「大紅蓮丸」の計算リソースを借りているのですが、その関係で原稿を書いてとお願いされたので、3回に渡って将棋プログラムの今について、書いていきたいと思います。 フリーランチの終焉、並列化の効率問題 アスキー読者の方々には言うまでもないのですが、まずは近年のCPU事情について解説していきたいと思います。ちょっと昔まではCPUはシングルコアが当たり前で18ヶ月経過すればCPUのトランジスター数は倍になり、性能が向上するという流れが続いていました。ソフトウェアはその性能向上に伴い

    電王・Ponanza開発者が語る、理由がわからないけどスゴイ“怠惰な並列化”
  • Linuxカーネルのコードを読んで勉強になったこと - φ(・・*)ゞ ウーン カーネルとか弄ったりのメモ

    Linuxカーネルのコードを読んでて、なるほど〜と思うことはよくあるけど、その中でも特に今までの考え方をぶち壊してくれたのはなんだっけと思ったところ、やっぱりリスト構造かなと言うところ。 c言語でリスト構造を作る場合、一般的な教科書方式だと↓のようにデータとnextポインタは密結合になってると思います。これの場合、struct foobarのポインタをnext要素に使っているので、他の構造体(例えば、struct hogehoge)で同じことをしようとすると、その構造体ではstruct hogehoge *nextというメンバ変数を持つ必要があります。 ヘッド要素はstruct foobarです。 struct foobar { int n; char s[64]; struct foobar *next; }; struct foobar head; Linuxカーネルの場合、データとリ

    Linuxカーネルのコードを読んで勉強になったこと - φ(・・*)ゞ ウーン カーネルとか弄ったりのメモ
  • 合議システムと文殊

    合議アルゴリズムと文殊のページ 電気通信大学 情報工学科 伊藤研究室 伊藤毅志、小幡卓弥、塙雅織 取り急ぎ、2009年5月3日公開開始! (全般にまだまだ工事中、、、) 1.合議とは 「三人寄れば文殊の知恵」という諺がありますが、さまざまに違う意見を持った人が集まって、意思を決定 しなくてはならないことは、人間社会ではよくあります。一人で結論を出すよりも、みんなで意見を出し合っ てその意見を集約することでより良い結論を導くことがければ、まさに「文殊の知恵」となります。しかし、逆に 「船頭多くして船山に登る」という諺のように、意見がまとまらずにうまくいかなくなってしまうこともありえます。 どちらになるかは、この多数の意見の中から、どうやって意見を決めていくのかにかかっていると言えます。 ここでは、複数の意見をもとに一つの意見を集約することを「合議」と呼ぶことにします。 2.

  • [CEDEC 2014]「ゲーム世界を動かすサイコロの正体 〜 往年のナムコタイトルから学ぶ乱数の進化と応用」 - 4Gamer.net

    [CEDEC 2014]ナムコ作品で見る乱数の歴史。「ゲーム世界を動かすサイコロの正体 〜 往年のナムコタイトルから学ぶ乱数の進化と応用」レポート ライター:箭進一 神奈川のパシフィコ横浜で行われた,ゲーム開発者向けイベントCEDEC 2014の最終日である2014年9月4日,「ゲーム世界を動かすサイコロの正体 〜 往年のナムコタイトルから学ぶ乱数の進化と応用」という講演が行われた。 登壇したバンダイナムコスタジオ HE技術部 加来量一氏 この講演のユニークな点は,旧ナムコの作品を「乱数」という視点から振り返るということだ。バンダイナムコスタジオ HE技術部のプログラマーである加来量一氏は,旧ナムコの初期作品50を解析し,それぞれの時代でどのような乱数が使われていたかを特定した。そこから見えてくる乱数技術改良の歴史を見ていくというのが,講義の主旨なのである。 1980年代のナムコアーケ

    [CEDEC 2014]「ゲーム世界を動かすサイコロの正体 〜 往年のナムコタイトルから学ぶ乱数の進化と応用」 - 4Gamer.net
  • Cのrand()よりmt19937の方が速いことがあるという話 - Educational NLP blog

    おはようございます。2年ぶりの記事ですね。 もう1月程前になってしまいましたが、id:sleepy_yoshi:20130720 で id:sleepy_yoshi さんが高速な非復元抽出をやっておられ、その中で、Cのrand関数を使っておられました。僕は、普段、std::mt19937を使っていたので、ちょっと比較してみた、という記事です。 C++11では、大別して、2つの擬似乱数生成の方法があります。1つはC(cstdlib)のrand関数で、高速ですが乱数の質が低く、もう1つはrandomヘッダのmt19937(メルセンヌ・ツイスタ)で、低速ですが乱数の質が高い(科学実験に適する)と、一般には思われていると思います。この高速・低速ですが、mt19937を使うことがボトルネックになるほど遅いことは殆どない、というのが今までの実感でした。なので、僕は、非復元抽出のような処理では、特にボト

    Cのrand()よりmt19937の方が速いことがあるという話 - Educational NLP blog
  • へ、変態っ!!読めないからやめてっ!bit使ったデータ構造・アルゴリズム実装集 - Negative/Positive Thinking

    この記事はCompetitive Programming Advent Calendar Div2012の2日目の記事です。 12月20日追記: Darseinさんが20日目の記事で、ビット演算についての詳しい説明を紹介してくださっています!必読ですね!!!!:) はじめに Y^´       ∨// /,∠ ,. ' /l/// /, ' , '/ ! | l }´     〈 〉    変  〈/ , ' // ̄`>< /// /// _,.=‐|'"´l l〈  変  / 〈    態.   ∨, '/l|   ,.'-‐、`//`7/  /''"´__ | ハ l丿  態   { 人)   ! !   (/!  |ヽ〈_ ・.ノ〃  〃 /  '/⌒ヾ.! ,' !く   ! !  (_ ト、__/   ヽ、_,.イ    /l l |:::::::```/:::::/...´..

    へ、変態っ!!読めないからやめてっ!bit使ったデータ構造・アルゴリズム実装集 - Negative/Positive Thinking
  • How Hacker News ranking algorithm works - amix.dk

    In this post I'll try to explain how Hacker News ranking algorithm works and how you can reuse it in your own applications. It's a very simple ranking algorithm and works surprising well when you want to highlight hot or new stuff. Digging into news.arc code Hacker News is implemented in Arc, a Lisp dialect coded by Paul Graham. Hacker News is opensource and the code can be found at arclanguage.or

  • ゲーマーでなくても仕組みぐらいは知っておきたいアルゴリズムx40

    高校生の時、数学の先生がこう言いました。 ゲームなんて、開発者が作ったルールの上で遊ばれるだけだ。 と。 その時、ゲーマーな自分はこう思いました。 ゲーマーは、開発者が作ったルールの上で遊ばれたい。 と。 というわけで、普段何気なくプレイしているゲームには、どのようなルール(アルゴリズム)があるのか。それを知るために、いろいろなゲームのアルゴリズムなどを解析しているページへのリンク集を作りました。 ほとんどのゲームのアルゴリズムは正式に発表されていないので、ユーザーの手による逆解析だったり、大学の研究による真面目な考察だったりします。(リンク先には、一部アルゴリズムと呼べないものも含まれています) 各種ゲームのプログラム解析 ドラクエ、FF、ロマサガのプログラム解析 DQ調査報告書(リンク切れ) ドラクエの物理ダメージ計算式は質的にどれも同じだが、細かい部分で微妙に違う RPG INST

    ゲーマーでなくても仕組みぐらいは知っておきたいアルゴリズムx40
  • 適切なクラスタ数を推定するX-means法 - kaisehのブログ

    K-means法によるクラスタリングでは、あらかじめクラスタ数Kを固定する必要があります。HatenarMapsでもK-means法を使っているのですが、クラスタ数は(特に根拠もなく)200個に決め打ちになっていました。 これに対して、X-means法というK-means法の拡張が提案されていることを知りました。X-means法を使うと、データに応じて最適なクラスタ数を推定できます。 K-means and X-means implementations http://www-2.cs.cmu.edu/~dpelleg/download/xmeans.pdf X-means法の考え方は、K=2で再帰的にK-means法を実行していくというもので、クラスタの分割前と分割後でBIC(ベイズ情報量規準)を比較し、値が改善しなくなるまで分割を続けます。 調べたところ、Javaのデータマイニングツー

    適切なクラスタ数を推定するX-means法 - kaisehのブログ
  • 転置インデックスを実装しよう - mixi engineer blog

    相対性理論のボーカルが頭から離れないmikioです。熱いわっふるの声に応えて今回はTokyo Cabinetのテーブルデータベースにおける検索機能の実装について語ってみたいと思います。とても長いのですが、最後まで読んだあかつきには、自分でも全文検索エンジンを作れると思っていただければ嬉しいです。 デモ モチベーションをあげていただくために、100行のソースコードで検索UIのデモを作ってみました。Java 6の日語文書を対象としているので、「stringbuffer」とか「コンパイル」とか「倍精度浮動小数」とかそれっぽい用語で検索してみてください。 インデックスがちゃんとできていれば、たった100行で某検索エンジン風味の検索機能をあなたのデータを対象にして動かすことができます。ソースコードはこちら(テンプレートはこちら)です。 でも、今回はUIの話ではないのです。ものすごく地味に、全文検索

    転置インデックスを実装しよう - mixi engineer blog
  • クラスカルのアルゴリズム - naoyaのはてなダイアリー

    昨年からはじめたアルゴリズムイントロダクションの輪講も終盤に差し掛かり、残すところ数章となりました。今週は第23章の最小全域木でした。辺に重みのあるグラフで全域木を張るとき、その全域木を構成する辺の合計コストが最小の組み合わせが最小全域木です。 アルゴリズムイントロダクションでは、クラスカルのアルゴリズム、プリムのアルゴリズムの二点が紹介されています。いずれも20世紀半ばに発見された古典的なアルゴリズムです。 二つのうち前者、クラスカルのアルゴリズムは、コスト最小の辺から順番にみていって、その辺を選んだことで閉路が構成されなければ、それは安全な辺であるとみなし、最小全域木を構成する辺のひとつとして選択します。これを繰り返しているうちに最小全域木が構成されるというアルゴリズムです。 今日はクラスカルのアルゴリズムを Python で実装してみました。扱うグラフは書籍の例を使ってみました。以下

    クラスカルのアルゴリズム - naoyaのはてなダイアリー
  • レコメンデーションとエディットグラフ

    レコメンデーションとエディットグラフ:コーディングに役立つ! アルゴリズムの基(10)(1/4 ページ) プログラマたるものアルゴリズムとデータ構造は知っていて当然の知識です。しかし、教科書的な知識しか知らなくて、実践的なプログラミングに役立てることができるでしょうか(編集部) 実際のアプリケーションで使われるアルゴリズム これまで見てきたアルゴリズムは、実際のアプリケーション開発の際にそのまま使われることはあまりなく、プログラム言語やライブラリなどですでに機能が用意されているものが大半でした。 今回は最終回ということで、実際のアプリケーション開発でそのまま使えるものを紹介したいと思います。 レコメンデーション ECサイトで、「あなたにお勧めの商品」を表示していることがあります。いろいろなデータベースや行動履歴のデータから、その人ごとにお勧めの商品をはじき出して推薦する機能をレコメンデー

    レコメンデーションとエディットグラフ
  • B木 - naoyaのはてなダイアリー

    昨年から続いているアルゴリズムイントロダクション輪講も、早いもので次は18章です。18章のテーマはB木(B Tree, Bツリー) です。B木はマルチウェイ平衡木(多分木による平衡木)で、データベースやファイルシステムなどでも良く使われる重要なデータ構造です。B木は一つの木の頂点にぶら下がる枝の数の下限と上限を設けた上、常に平衡木であることを制約としたデータ構造になります。 輪講の予習がてら、B木を Python で実装してみました。ソースコードを最後に掲載します。以下は B木に関する考察です。 B木がなぜ重要なのか B木が重要なのは、B木(の変種であるB+木*1など)が二次記憶装置上で効率良く操作できるように設計されたデータ構造だからです。データベースを利用するウェブアプリケーションなど、二次記憶(ハードディスク)上の大量のデータを扱うソフトウェアを運用した経験がある方なら、いかにディ

    B木 - naoyaのはてなダイアリー
  • クラスタリングの定番アルゴリズム「K-means法」をビジュアライズしてみた - てっく煮ブログ

    集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ

  • ダイクストラ法, 貪欲アルゴリズム - naoyaのはてなダイアリー

    現実逃避をしながらウェブを眺めていたら ダイクストラ法(最短経路問題) にたどり着きました。単一始点最短路問題におけるダイクストラ法の解説です。 何を思ったのか、図を眺めていたところ動かしたい衝動に駆られて、気付いたらパワポでアニメーションができていました。 http://bloghackers.net/~naoya/ppt/090319dijkstra_algorithm.ppt 実装もしてみました。隣接ノードの表現は、ここではリストを使いました。 #!/usr/bin/env perl use strict; use warnings; package Node; use base qw/Class::Accessor::Lvalue::Fast/; __PACKAGE__->mk_accessors(qw/id done cost edges_to prev/); package Q

    ダイクストラ法, 貪欲アルゴリズム - naoyaのはてなダイアリー
  • Latent Semantic Indexing - naoyaのはてなダイアリー

    情報検索におけるベクトル空間モデルでは、文書をベクトルとみなして線形空間でそれを扱います。この文書ベクトルは、文書に含まれる単語の出現頻度などを成分に取ります。結果、以下のような単語文書行列 (term document matrix) が得られます。 d1 d2 d3 d4 Apple 3 0 0 0 Linux 0 1 0 1 MacOSX 2 0 0 0 Perl 0 1 0 0 Ruby 0 1 0 3 この単語文書行列に対して内積による類似度などの計算を行って、情報要求に適合する文書を探すのがベクトル空間モデルによる検索モデルです。 見ての通り、単語文書行列の次元数は索引語の総数です。文書が増えれば増えるほど次元は増加する傾向にあります。例えば索引語が100万語あって検索対象の文書が 1,000万件あると、100万次元 * 1,000万という大きさの行列を扱うことになりますが、単

    Latent Semantic Indexing - naoyaのはてなダイアリー
  • CNET Japan

    人気記事 1 スマホが望遠性能を競うなか、パナソニックが「光学30倍ズーム」のコンデジを6万円で投入した話 2025年03月19日 2 Pixel 9a実機インプレ--「カメラの出っ張り」廃止で平らな背面が最高 iPhone 16eより安い 2025年03月20日 3 デジカメの人気が再燃している5つの理由--スマホに追いやられたはずがなぜ? 2025年03月12日 4 レノボ、新「ThinkPad」15機種--日向けに軽量化追求、塚副社長「1kg以外の話は聞きたくない」 2025年03月19日 5 ついにLINEが「スマホの2台持ち」に対応--ただしサブ機がAndroidの場合のみ(追記) 2025年03月17日 6 筆者が手放せなくなった「USB-C」ケーブル--旅行や出張が多い人に最適【ミニレビュー】 2025年03月18日 7 アップル純正「MagSafe充電器」がAmazon

    CNET Japan
  • 最長しりとり連鎖問題 - Satomilogical Research

    こういう問題を思いついた。 次に言う言葉がもうない場合、最後に「ん」がついた場合にしりとりが終了するとして、ある辞書に登録された単語のみを使ってしりとりをするとしよう。もっとも長いしりとり連鎖の回数(とその連鎖のリスト)を出力するアルゴリズムを考えよ。 twitter/satomilogy ある辞書に登録された単語に限定してしりとりを行うとどうなるんだろうと考えた。まずしりとりはちゃんと終わるだろうか。有限の単語数の辞書なんだから必ず終わる。「ん」がついても終わる。では、ある辞書の中でどれくらい長くしりとりを続けることができるのだろうか、というのがこの問題です。可能なしりとり連鎖の組み合わせを総当りで求めて、その中から最長のものを選ぶというアルゴリズムはすぐに思いつきましたけど、おもしろくないですね。 問題を単純化してみてわかったこと 実際の国語辞典を使ってやる場合には、しりとりのローカル