導入 回帰モデル構築の際、汎化性能を向上させるために正則化の手法がたびたび用いられます。これは、考えているデータ数に対して特徴量の数が非常に多い場合や、特徴量間に強い相関(多重共線性)がある場合に有効な方法となっています。このような場合に、通常の回帰モデル構築の際に用いられる2乗誤差などの目的関数に加え、ノルム(は正整数)のような正則化項(もしくは罰則項)加えて最適化をおこなうことで先程の問題を解消することができます。こういった正則化項を加えた上でモデルの最適化をおこなう( = パラメータを推定する)方法を、正則化法といいます。 代表的な正則化法に、Lasso, Ridge, Elastic Net回帰があります。これらは、解釈性も含めた特徴があり、必ずしも高精度のものだからよいわけではない、というのが私の考えです。しかし一方で、{caret}を使ってこの中で最も精度がよいものを採用しまし