タグ

ブックマーク / hoxo-m.hatenablog.com (5)

  • A/Bテストと統計的検定の注意点(その1) - ほくそ笑む

    素晴らしい記事が上がっていたので言及したい。 仮説検証とサンプルサイズの基礎 - クックパッド開発者ブログ この記事では、A/Bテストにおいて、意味のある差が出たかどうかを統計的検定を用いて判断する方法を説明しています。 Web上にある多くのA/Bテストの記事と異なるのは、単に検定手法にデータを突っ込んでp値を出すのではなく、 意味のある差とは何かを事前に決定する サンプルサイズを事前に決定する という統計的検定のフレームワークに則ったまともな方法で判断を行っているという点です。 よく言われる統計的検定は無意味だなどという言論の多くは、このフレームワークを使っていないだけに過ぎず、不確実な事象に対する科学的な検証方法として、統計的検定のフレームワークの強力さはいまだ健在です。 さて、統計的検定のフレームワークについては上の記事および記事中で紹介されている参考文献にお任せするとして、ここでは

    A/Bテストと統計的検定の注意点(その1) - ほくそ笑む
    chezou
    chezou 2016/09/30
    アンサーソング来てた。中の人に伝えます :)
  • 統計を学びたい人へ贈る、統計解析に使えるデータセットまとめ - ほくそ笑む

    はじめに 統計解析の手法を学ぶのに、教科書を読むのは素晴らしい学習方法です。 しかし、教科書で理論的なことを学んだだけでは、統計手法を使いこなせるようにはなりません。 統計解析手法を身につけるには、実際のデータについて手法を適用し、パラメータを変えるなどの試行錯誤を行い、結果を考察するというような経験を積むことが大切です。 それでは実際のデータをどうやって手に入れましょうか? 実験や調査をして実際のデータを得るのは大変でお金もかかります。 幸運なことに、世の中には適度なサイズの自由に使えるデータがたくさん存在します。 例えば、統計言語 R には、100以上ものデータセットがデフォルトで付属しています。 ただし、不幸なことに、それらのほとんどは英語で説明が書かれています。 英語は、いつかは乗り越えなければならない壁ですが、最初のうちはちょっと避けて通りたいところです。 というわけで、今日は、

    統計を学びたい人へ贈る、統計解析に使えるデータセットまとめ - ほくそ笑む
  • ベイズ統計の入門書が出版ラッシュなのでまとめてみた - ほくそ笑む

    【宣伝】2016/09/14 このページに来た方へ。あなたが求めているはこれです。 StanとRでベイズ統計モデリング (Wonderful R) 作者: 松浦健太郎,石田基広出版社/メーカー: 共立出版発売日: 2016/10/25メディア: 単行この商品を含むブログ (10件) を見るまずこれを予約してから下記を読むといいです。 【宣伝終】 最近、ベイズ統計の入門書がたくさん出版されているので、ここで一旦まとめてみようと思います。 1. 基礎からのベイズ統計学: ハミルトニアンモンテカルロ法による実践的入門 (2015/6/25) 基礎からのベイズ統計学: ハミルトニアンモンテカルロ法による実践的入門 作者: 豊田秀樹出版社/メーカー: 朝倉書店発売日: 2015/06/25メディア: 単行この商品を含むブログ (6件) を見る データ分析業界ではかなり有名な豊田秀樹先生のです

    ベイズ統計の入門書が出版ラッシュなのでまとめてみた - ほくそ笑む
    chezou
    chezou 2015/12/29
  • 統計的消去で擬似相関を見抜こう! - ほくそ笑む

    今日は初心者向け記事です。 はじめに ある範囲の年齢の小学生32人を無作為に選び、算数のテストを受けてもらい、さらにその身長を測定しました。 身長に対する算数の点数のグラフは次のようになりました。 なんと、身長の高い子供の方が、算数の点数が高いという結果になりました! 身長が算数の能力に関係しているなんて、すごい発見です! しかしながら、結論から言うと、この結果は間違っています。 なぜなら、抽出したのは「ある範囲の年齢の小学生」であり、年齢の高い子も低い子も含まれているからです。 年齢が高いほど算数能力は高くなり、年齢が高いほど身長も高くなることは容易に推測できます。 この関係を図で表すと次のようになります。 つまり、年齢と算数能力に相関があり、年齢と身長にも相関があるため、身長と算数能力にも見かけ上の相関が見えているのです。 このような相関を擬似相関と言います。 統計解析では、このような

    統計的消去で擬似相関を見抜こう! - ほくそ笑む
  • 主成分分析が簡単にできるサイトを作った - ほくそ笑む

    あけましておめでとうございます。 年もよろしくお願いいたします。 主成分分析 さて、昨年の終わりごろから、私は仕事で主成分分析を行っています。 主成分分析というのは、多次元のデータを情報量をなるべく落とさずに低次元に要約する手法のことです。 主成分分析は統計言語 R で簡単にできます。 例として iris データで実行してみましょう。 data(iris) data <- iris[1:4] prcomp.obj <- prcomp(data, scale=TRUE) # 主成分分析 pc1 <- prcomp.obj$x[,1] # 第一主成分得点 pc2 <- prcomp.obj$x[,2] # 第二主成分得点 label <- as.factor(iris[,5]) # 分類ラベル percent <- summary(prcomp.obj)$importance[3,2] *

    主成分分析が簡単にできるサイトを作った - ほくそ笑む
    chezou
    chezou 2012/01/07
    実装はどうしてるんだろう?
  • 1