
アイドル顔識別のためのデータ収集 をコツコツ続けて それなりに集まってきたし、これを使って別のことも…ということでDCGANを使ったDeep Learningによるアイドルの顔画像の「生成」をやってみた。 まだだいぶ歪んでいたりで あまりキレイじゃないけど…。顔画像を多く収集できているアイドル90人の顔画像からそれぞれ120件を抽出した合計10800件をもとに学習させて生成させたもの。 分類タスクとは逆方向の変換、複数のモデル定義などがあってなかなか理解が難しい部分もあったけど、作ってみるとそこまで難しくはなく、出来上がっていく過程を見るのが楽しいし とても面白い。 DCGANとは "Deep Convolutional Generative Adversarial Networks"、略してDCGAN。こちらの論文で有名になった、のかな? [1511.06434] Unsupervise
強化学習の一手法であるQ-learning とディープニューラルネットを組み合わせた Deep Q Network、通称DQNを使って倒立振子の振り上げ問題を解決してみます。 問題設定 「倒立振子の振り上げ問題」というのは、今回はこういう問題設定です。 まず空中に静止したモータがあって、モータ軸に棒の一端がつながっています。棒は中心に質量が集中していて剛性$\infty$で太さ0の、よくある棒です。初期状態では棒は重力にしたがって下向きにぶら下がっています。この状態から振り子を振り上げて倒立状態で静止させてください、という問題です。古きよき制御工学では、振り上げ用と静止用に別設計されたコントローラを2つ用意して切り替えるなど、非線形要素を含むコントローラを用いて対処することになります。いや、やったことないですけど、そうらしいです。 今回は、モータは右か左に一定トルクの回転しかできない、とし
2016/3/26 "第52回 データマイニング+WEB @東京( #TokyoWebmining 52nd ) ー機械学習活用 祭りー" を開催しました。 第52回 データマイニング+WEB @東京( #TokyoWebmining 52nd ) ー機械学習活用 祭りーEventbrite Google グループ 会場提供して下さったFreakOutさん、どうもありがとうございました。素敵なトークを提供してくれた講師メンバーに感謝します。多くの方々の参加を嬉しく思っています。 参加者ID・バックグラウンド一覧 参加者セキココ:第52回 データマイニング+WEB @東京 セキココ (作成してくれた [Twitter:@komiya_atsushi] さんに感謝) 以下、全講師資料、関連資料、ツイートまとめです。 AGENDA: ■Opening Talk: O1.「データマイニング+WEB
最近、畳み込みニューラルネットワークを使ったテキスト分類の実験をしていて、知見が溜まってきたのでそれについて何か記事を書こうと思っていた時に、こんな記事をみつけました。 http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp 畳み込みニューラルネットワークを自然言語処理に適用する話なのですが、この記事、個人的にわかりやすいなと思ったので、著者に許可をもらって日本語に翻訳しました。なお、この記事を読むにあたっては、ニューラルネットワークに関する基礎知識程度は必要かと思われます。 ※日本語としてよりわかりやすく自然になるように、原文を直訳していない箇所もいくつかありますのでご了承ください。翻訳の致命的なミスなどありましたら、Twitterなどで指摘いただければすみやかに修正します。 以下
PFIセミナー(2016/02/25)で発表したスライドです。伝承サンプリング可能な生成モデルに関するDeep Learningの紹介です(キーワード:Wake-Sleep, 変分 AutoEncoder, Generative Adversarial Nets, Likelihood Ratio)
TensorFlowを使って、実際にコードを動かしながら、DeepLearningの仕組みを段階的に学んでいきましょう。 目次 ・No.1 TensorFlow Tutorialの数学的背景 − MNIST For ML Beginners(その1) 平面上の2種類のデータをロジスティック回帰で直線的に分類するという、機械学習の基礎を説明します。 ・No.2 TensorFlow Tutorialの数学的背景 − MNIST For ML Beginners(その2) 線形多項分類器とソフトマックス関数で、3種類以上のデータを分類する方法を説明します。 ・No.3 TensorFlow Tutorialの数学的背景 − TensorFlow Mechanics 101(その1) No.1で説明した問題に対して、もっとも単純なニューラルネットワークを適用して、複雑な境界を持つ分類を実現します
人間ではなく機械が自動的に意思決定することのメリットとして、大量のデータをInputとした予測、推定、分類などの処理をAlgorithmの構築によって瞬時に行える事である。 1枚の画像だけを見て何が写っているかのような判断においては人間の脳が優れているものの、大量のデータInputを基にした組み合わせの選択や最適解に瞬時に辿り着くという目的においては機械に任せてしまったほうが効率的とも言える。昔から機械学習による予測、推定、分類などの処理は様々な手法として提案されており、どういった問題を機械に判断させるかという切り口で最適なものを人が選択する。下記表に機械学習の種類と特徴を纏めてみた。※ただし必ずしも6種類のいずれかに分類される訳ではない。例としてニューラルネットワークがあり教師あり学習であり深層学習にも位置する。 機械学習の種類 特徴 代表的なAlgorithm 備考 教師あり学習 正解
TensorFlowによるディープラーニングで、アイドルの顔を識別する - すぎゃーんメモ の続き。 前回は最も簡単に画像分類を試すために TensorFlow に同梱されているtensorflow.models.image.cifar10パッケージのモデルや学習機構を利用して約75%の識別正答率の分類器を作ったが、それよりも良い結果を出したいし色々ためしてみたい、ということで今回は色々と自前で実装したり改良を加えてみた。 結論だけ先に書くと、約90%の正答率のものを作ることができた。分類数も変えてしまっているので一概には前回のものと比較できないけど。 入力画像の変更 まずは入力の画像について。 前回はCIFAR-10のデータセットに合わせて、検出して切り出した顔画像を32x32サイズに縮小したものを利用していた。 32x32 → inside 96x96 of 112x112 流石に32
最近、ディープラーニングが流行ってるせいか、機械学習関連の本や学習法をまとめた記事がバズっているのをよく目にします。 みんな興味はあるけど、なかなか手を出しにくい分野だから、学習方法が注目されているのだと思うのですが、それにしても多すぎると思いました。なので、機械学習のまとめをまとめてみました。Navarまとめのまとめみたいな。 人工知能ブームに追従する機械学習ブームの中、今年勉強するものの参考になれば幸いです。 オススメ本のまとめのまとめ breakbee.hatenablog.jp d.hatena.ne.jp d.hatena.ne.jp blog.livedoor.jp d.hatena.ne.jp d.hatena.ne.jp 学習に役立つ情報のまとめのまとめ qiita.com d.hatena.ne.jp qiita.com d.hatena.ne.jp aidiary.ha
Machine Learning Advent Calendar 2015 第14日です。去年のAdvent Calendarで味をしめたので今年も書きました。質問、指摘等歓迎です。 この記事の目的 ここ2~3年のDeep Learningブームに合わせて、リカレントニューラルネットワークの一種であるLong short-term memory(LSTM)の存在感が増してきています。LSTMは現在Google Voiceの基盤技術をはじめとした最先端の分野でも利用されていますが、その登場は1995年とそのイメージとは裏腹に歴史のあるモデルでもあります。ところがLSTMについて使ってみた記事はあれど、詳しく解説された日本語文献はあまり見当たらない。はて、どういうことでしょうか。 本記事ではLSTMの基礎をさらいつつ、一体全体LSTMとは何者なのか、LSTMはどこに向かうのか、その中身をまとめ
畳み込みニューラルネットワーク (Convolutional Neural Network) を勉強するため、MNISTのデータの識別をライブラリ(Caffeやcuda-convnetなど)を使用せず一から実装してみましたが、ここでは備忘録として書いていくことにします。 出来る限り理解し易いように書いていくように努力はします。(^_^;; おかしな点があれば教えてください。お願いします。 まずは二値分類 多次元の入力データから、それが識別対象かそうでないか(例えば画像から人かそうでないか)といった二値分類の学習を考えます。 入力を\(n\)次元の\(\mathbf{x}=(x_1\ x_2\ \dots\ x_n)^\text{T}\)*1、重みを\(\mathbf{w}=(w_1\ w_2\ \dots\ w_n)^\text{T}\)とし、これら入力と重みを掛け合わせたものとバイアス\
最近おそ松さんというアニメが流行っていますね。 6つ子のおそ松くんのアニメを現代版にアレンジした作品なのですが、その過程でそれぞれの兄弟の特徴が付けられています。 左から、おそ松、から松、チョロ松、一松、十四松、とど松で、順に長男次男三男・・・となっています。 簡単にまとめると、このようになります。 生まれ 名前 色 特徴 長男 おそ松 赤 クズ 次男 から松 青 ナルシスト 三男 チョロ松 緑 ツッコミ、意識高い系 四男 一松 紫 コミュ障 五男 十四松 黄色 マイペース 六男 とど松 ピンク 甘え上手、腹黒 それぞれの色を着ているときは、簡単に見分けられますが、そうでないときは見分けるのに困難を伴います。 髪や目つきにも特徴があるので、見分けることができるので、このような表を作ってらっしゃる方もいます。 それでも結構苦労したので、同じくディープラーニングで学習させたモデルで判別できない
連載目次 最近注目を浴びることが多くなった「Deep Learning(ディープラーニング)」と、それを用いた画像に関する施策周りの実装・事例について、リクルートグループにおける実際の開発経験を基に解説していく本連載。前回の「ニューラルネットワーク、Deep Learning、Convolutional Neural Netの基礎知識と活用例、主なDeep Learningフレームワーク6選」では、ニューラルネットワーク、Deep Learning、Convolutional Neural Netの基礎知識と活用例、主なDeep Learningフレームワークを紹介しました。今回は、リクルートグループで画像解析において積極的に利用しているフレームワーク「Caffe」を中心にDeep Learningを利用した画像解析について解説します。 最初に、画像解析で実施している「物体認識」の概要を紹
はじめに 近年Deep Learningへの注目が高まっていますが、多くの場合膨大なデータを必要とすること、学習にはGPU計算環境が必要であったりなど、独特の敷居の高さがあります。この記事では、この敷居を大きく下げるであろうCaffeについて紹介します。ただ、Caffeを紹介する記事はすでに良いものがたくさんあり、そもそも公式documentがかなり充実しているので、今回は躓きやすい部分や他の記事があまり触れていない部分を中心に紹介していきます。 Caffeって何? CaffeはDeep Learningのフレームワークの一つです。Deep Learningは一般に実装が難しいとされていますが、フレームワークを使えばかなり手軽に扱うことができます。 代表的なフレームワークには、 Caffe theano/Pylearn2 Cuda-convnet2 Torch7 などがあります。この中でも
Googleが先日「TensorFlow」という機械学習ライブラリを発表していて、話題になっています。 さっそく今日社内で紹介LTしてきました。 「社内」のエンジニアの話で言うと、機械学習の会社ではないので、機械学習とかDeep Learningとかには深掘りして話していないです。もちろん、機械学習ライブラリとかも知らない、けど、「なんかGoogleからディープラーニングをOSSで出したって話題になっているぞ」っていう感じの人向けに話しています。 TensorFlowをざっくりLTしてみた from Mitsuki Ogasawara 公式チュートリアルをちょっとだけ逸脱した線形回帰をやってみたサンプルもあります。 ちゃんと自動で微分できてます。 github.com このライブラリ、結構良いなあと思うのは、Googleが使っているという実績力かなと思います。公開初日に「Googleのプロ
Autogradという野郎が乗り込んできました。はい、そりゃもういきなり。複雑な確率モデルや損失関数だとしても、パラメータに関する勾配をこれでもかというぐらい簡単に計算できちゃうので、機械学習の世界に大きな影響を与えそうです。現時点では、PythonとTorchでの実装が公開されているようですが、これからJuliaなど他の言語でも実装されていきそうですね。 (補足:この記事を書いたすぐ後にGoogleがTensorFlowなるものを出してきまして、そちらでも自動微分がしっかり実装されてるみたいです〜。機械学習関連のフレームワークは移り変わりが激しいですねー ^^; ) ちなみに始まりはこんな感じでした。 ゆるいですね。 とりあえずチュートリアルやりながら、Python版チュートリアルの前半部分にテキトーな日本語訳をつけたので、ここでシェアしておきます。英語が読める方は、僕のヘンテコな日本語
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く