読み飛ばしてください おはようございます、しなもんです。 Pythonの公式ドキュメントを読んでたら、なんか知らない便利機能がたくさん出てきました。 なんだこれ。 というわけでまとめてみました。 参考になれば幸いです。 f-stringsの拡張機能 f-strings、便利ですよね。大好きです。 そんなあいつには裏技があるみたいです。 デバッグ用の=演算子 Python 3.8以降、f-stringの中で=演算子を使用することで 変数名とその値を同時に表示できるらしい。
はじめに 最近はあまり触れていないが、PythonでDiscordのBOTを作成しようとすると、discord.pyやPycordのようなライブラリを使うのが一般的と思う。 その中でよく使われる構文の中に@bot.commandのような構文を目にすることだろう。 これはデコレータと呼ばれる構文なのだが、私は中身の構造は関数型引数を実装した関数のような感じなんだろうなと予想はしながらも、なんとなしで利用していた。 そんなわけで、調べていきながら便利な使い方なんかを探してみる。 import discord from discord.ext import commands intents = discord.Intents.default() intents.members = True intents.message_content = True bot = commands.Bot( co
Kaggleで始める機械学習入門でKaggleのアカウントを作成して、一通りの操作ができました。次はKaggle learnの以下の初級講座を使って機械学習の基礎を学習します。 この初級講座は7回のレッスンで構成されており、各回は解説パート(tutorial)と実践パート(exercise)に分かれています。実践パートでは、コンペと同様のNotebookでコードを動かす形になります。 実際にやってみた感想です。 <良かった点> ・1回1時間程度でサクッとできる ・1回あたりの内容は比較的かんたんで理解しやすい ・解説パートで学んだコードを実践パートで入力し、答え合わせできるので達成感がある <悪かった点> ・すべて英語… 英語なのは仕方ないですね。DeepLに頼りながら読み進めました。 内容としては、まず決定木を使ってシンプルなモデルを構築します。次にその結果を評価する方法を学び、良いモデ
はじめに 開発部の ikasat です。 皆さんは git, ssh, rsync のような外部コマンドを呼び出すスクリプトを書きたくなったことはありますか? 個人的にこの類のスクリプトは最初はシェルスクリプトとして書くのですが、改修を重ねるうちに肥大化して処理も複雑になり、 後から Python のような汎用プログラミング言語で書き直すことがよくあります。 外部コマンド呼び出しを書き直す際に、Git 操作のために pygit2、 SSH 接続のために paramiko のようなライブラリをわざわざ使うのは大がかりだったり、 rsync に相当するようなこなれたライブラリが存在しなかったりする場合があります。 そのような時は標準ライブラリの subprocess モジュールを利用し、Python から外部コマンドを呼び出すことになるでしょう。 しかしながら、Python のチュートリアルペ
A few months ago, I set myself the challenge of writing a C compiler in 500 lines of Python1, after writing my SDF donut post. How hard could it be? The answer was, pretty hard, even when dropping quite a few features. But it was also pretty interesting, and the result is surprisingly functional and not too hard to understand! There's too much code for me to comprehensively cover in a single blog
Google が公開している、より良いデータ分析のためのガイドブック「Good Data Analysis」で、データ分析の要所が簡潔にまとめられていて感動した 2022-03-08 Google の非公式ブログで、The Unofficial Google Data Science Blog というデータサイエンスをテーマにしたブログがある。 その中で、 Practical advice for analysis of large, complex data sets の記事を元にして作られた Google Developers Guides: Machine Learning Guides > Good Data Analysis を昨日見かけて読んでいたら素晴らしいドキュメントだったので、ここでその感動を共有したかったので筆をとったしだい。 Good Data Analysis の概
はじめに# データビジュアライゼーションとは,数値や文章などのデータに基づいた情報を,人間が理解しやすい形に視覚化する技術を指します. このサイトは,文化庁のメディア芸術データベース・ラボ(MADB Lab)で公開されている四大少年誌( 週刊少年サンデー, 週刊少年ジャンプ, 週刊少年チャンピオン, 週刊少年マガジン )のデータを用いて,データビジュアライゼーションの学習を手助けすることを目指しています. データビジュアライゼーション(に限らずデータ分析全般)の学習において重要なのは,分析対象のデータに興味を持てるかどうかです. 本書では約47年の四大少年誌のマンガ作品データを採用しているため,モチベーションを保ちつつ学習を進めることが可能です.
2023年AtCoder言語アップデートにより、Rustの環境は大きく変化しました。そのため、本記事はフリーズさせ、後日、2023年版に対応した記事を新規作成したいと思います。 筆者は、競プロのアルゴはPythonを使いつつ、マラソンはRustを使っております。前者は発想を短時間にコードにすることを重視し、後者はコーディングに時間をかけてでも高速性を確保したいからです。 その際、Pythonでできたアレを、Rustでどう書くんだっけ、と悩むことが多く、悩んだ結果を自分メモを兼ねてTipsにすることにしました。競プロに出てくるパターンを多く収録していますが、競プロ目的以外でも参考になるかと思います。とりありず、ざっと記述してみましたが、そのうち増やしたり、章立てを変えたりするかも知れません。 なお、参照がーとかトレイトがーとか、Rustそのものの入門には言及していませんので、適宜、別の記事や
Pythonコードで理解するニューラルネットワーク入門 ニューラルネットワークの仕組みや挙動を、数学理論からではなく、Pythonコードから理解しよう。フルスクラッチでニューラルネットワーク(DNN:Deep Neural Network)を実装していく。 第1回 Pythonでニューラルネットワークを書いてみよう(2022/02/09) 本連載(基礎編)の目的 ・本連載(基礎編)の特徴 ニューラルネットワークの図 訓練(学習)処理全体の実装 モデルの定義と、仮の訓練データ ステップ1. 順伝播の実装 ・1つのノードにおける順伝播の処理 ・重み付き線形和 ・活性化関数:シグモイド関数 ・活性化関数:恒等関数 ・順伝播の処理全体の実装 ・順伝播による予測の実行例 ・今後のステップの準備:関数への仮引数の追加 第2回 図とコードで必ず分かるニューラルネットワークの逆伝播(2022/02/16)
はじめに 本書は,筆者が長年書き溜めた様々な実務的な最適化問題についてまとめたものである. 本書は,Jupyter Laboで記述されたものを自動的に変換したものであり,以下のサポートページで公開している. コードも一部公開しているが,ソースコードを保管した Github 自体はプライベートである. 本を購入した人は,サポートページで公開していないプログラムを 圧縮ファイル でダウンロードすることができる. ダウンロードしたファイルの解凍パスワードは<本に記述>である. 作者のページ My HP 本書のサポートページ Support Page 出版社のページ Pythonによる実務で役立つ最適化問題100+ (1) ―グラフ理論と組合せ最適化への招待― Pythonによる実務で役立つ最適化問題100+ (2) ―割当・施設配置・在庫最適化・巡回セールスマン― Pythonによる実務で役立つ
当サイト【スタビジ】の本記事では、XgboostやLightGBMに代わる新たな勾配ブースティング手法「Catboost」について徹底的に解説していき最終的にPythonにてMnistの分類モデルを構築していきます。LightGBMやディープラーニングとの精度差はいかに!? こんにちは! 消費財メーカーでデジタルマーケター・データサイエンティストをやっているウマたん(@statistics1012)です! Xgboostに代わる手法としてLightGBMが登場し、さらにCatboostという手法が2017年に登場いたしました。 これらは弱学習器である決定木を勾配ブースティングによりアンサンブル学習した非常に強力な機械学習手法群。 計算負荷もそれほど重くなく非常に高い精度が期待できるため、Kaggleなどのデータ分析コンペや実務シーンなど様々な場面で頻繁に使用されているのです。
By Francesca Lazzeri. This article is an extract from the book Machine Learning for Time Series Forecasting with Python, also by Lazzeri, published by Wiley. In the first and second articles in this series, I showed how to perform feature engineering on time series data with Python and how to automate the Machine Learning lifecycle for time series forecasting. In this third and concluding article,
This article is an attempt at explaining the Git version control system from the bottom up, that is, starting at the most fundamental level moving up from there. This does not sound too easy, and has been attempted multiple times with questionable success. But there’s an easy way: all it takes to understand Git internals is to reimplement Git from scratch. No, don’t run. It’s not a joke, and it’s
Top > ラーニング > 数理・データ科学のための微積分の基礎が学べる無料講座、京大の講師が担当「我慢も必要だと思って頑張ってほしい」
はじめに プログラミング自体は文系、理系、年齢関わらず勉強すればある程度ものになります。プログラミングがある程度できるようになるとTensorflow,PyTorchやscikit-learn等のライブラリで簡単にできる機械学習やデータサイエンスに興味を持つの必然! これからさらになぜ上手くいくのか・いかないのかの議論をしたい、社内・外に発表したい、理論的な所を理解したい、先端研究を取り入れたい、応用したい等々と次々に実現したい事が増えるのもまた必然でしょう。このときに初めて数学的なバックグラウンドの有無という大きな壁が立ちはだかります。しかし、数学は手段であって目的ではないので自習に使える時間をあまり割きたくないですよね。また、そもそも何から手を付けたら良いかわからないって人もいるかと思います。そんな人に向けた記事です。本記事の目標は式の意図する事はわからんが、仕組みはわかるという状態に
中学・高校数学で学ぶ、数学×Pythonプログラミングの第一歩:数学×Pythonプログラミング入門 「Pythonの文法は分かったけど、自分では数学や数式をプログラミングコードに起こせない」という人に向けて、中学や高校で学んだ数学を題材に「数学的な考え方×Pythonプログラミング」を習得するための新連載がスタート。連載コンセプトから、前提知識、目標、本格的に始めるための準備までを説明する。 連載目次 この連載では、中学や高校で学んだ数学を題材にして、Pythonによるプログラミングを学びます。といっても、数学の教科書に載っている定理や公式だけに限らず、興味深い数式の例やAI/機械学習の基本となる例を取り上げながら、数学的な考え方を背景としてプログラミングを学ぶお話にしていこうと思います。 今回は、それに先だって、プログラミングを学ぶ上で数学を使うことのメリットや、Pythonでどのよう
さくらインターネットは3月10日、プログラミング言語Pythonの基礎が学べるというオンライン講座「Tellus×TechAcademy 初心者向け Tellus 学習コース」を無料で提供すると発表した。新型コロナウイルスの感染拡大に伴い、外出を控えている人向けに開講する。同日から申し込みを受け付け、16日から提供する。定員は100人(応募多数の場合は抽選)。 講座では、機械学習に必要なPythonの文法に加え、行列計算を行うライブラリ「NumPy」、グラフを描画できるライブラリ「Matplotlib」、データ解析を行えるライブラリ「Pandas」、画像ファイルを読み込むためのライブラリ「Pillow」、機械学習のフレームワーク「scikit-learn」の使い方を学べる。 さくらインターネットが構築・運用している、人工衛星が取得したデータを分析できるプラットフォーム「Tellus」も活用
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く