#!/usr/bin/env python import numpy as np import pylab as P # # The hist() function now has a lot more options # # # first create a single histogram # mu, sigma = 200, 25 x = mu + sigma*P.randn(10000) # the histogram of the data with histtype='step' n, bins, patches = P.hist(x, 50, normed=1, histtype='stepfilled') P.setp(patches, 'facecolor', 'g', 'alpha', 0.75) # add a line showing the expected di