タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

pandasとpolarsに関するdannのブックマーク (2)

  • 超高速…だけじゃない!Pandasに代えてPolarsを使いたい理由 - Qiita

    PolarsというPandasを100倍くらい高性能にしたライブラリがとても良いので布教します1。PolarsRustベースのDataFrameライブラリですが、記事ではPythonでのそれについて語ります。 ちなみにpolarsは白熊の意です。そりゃあまあ、白熊と大熊比べたら白熊のほうが速いし強いよねってことです2。 何がいいの? 推しポイントは3つあります 高速! お手軽! 書きやすい! 1. 高速 画像はTPCHのBenchmark(紫がPolars)3。 日語でも色々記事があるので割愛しますが、RustやApach Arrowなどにお世話になっており、非常に速いです。MemoryErrorに悩まされる問題も解決されます。開発者のRitchieがしゃれおつなツイートをしてるので、そちらも参考にどうぞ ↓ 4。 抄訳: (ひとつ目)Pandasは黄色くした部分でDataFram

    超高速…だけじゃない!Pandasに代えてPolarsを使いたい理由 - Qiita
  • 超高速DataFrameライブラリー「Polars」について

    はじめに ここ最近、Polarsについて調べる中で色々と面白そうだと思い現在勉強中です。今回の記事では勉強内容の整理も兼ねて、Polarsの特色を紹介できればと思っています。 Polarsとは RustPythonで使える[1]超高速("Blazingly fast")DataFrameライブラリー、つまりデータ解析に使えるライブラリーとなります。pandasに対するPolars(しろくま)であり洒落ているなと思います。 Core部分はRustで実装されており、インターフェースとしてPythonからも呼び出せるようになっています。RustからPythonパッケージへのビルドはmaturin(PyO3)を使っています。 環境 記事作成時のOSや言語、ライブラリーのバージョンは以下になります。関連が強そうなもののみ抜粋しています。 Ubntu 22.04 Python 3.10.6 (mai

    超高速DataFrameライブラリー「Polars」について
  • 1