タグ

pythonと統計に関するdeejayrokaのブックマーク (3)

  • プロでもよくある線形回帰モデルの間違い - Qiita

    最近、データサイエンスが流行っていることもあり、線形回帰モデルについても解説記事を見かけることが多くなりました。情報にアクセスしやすくなったのはいいことだと思うんですが、ずっと以前から間違いや解説の不足が多い理論なので、私なりに解説を試みたいと思います。全体的にあまり厳密ではありませんが、線形回帰モデルを学びたての方には有益な記事になるかなと思います。 あと、私も勉強中の身なので、間違いがあったらご指摘いただけたら嬉しいです。 題 さて、よくある間違いとは以下のような解説です。 線形性の仮定が満たされていないので、線形回帰モデルを使ってはいけない 残差が正規分布&等分散ではないので、線形回帰モデルを使ってはいけない 回帰係数に対するt検定の結果をもとに、p値が大きい説明変数を除外する 多重共線性があるとよくないので、変数間で相関が強い、もしくはVIF値が大きい変数を除外する AICが小さ

    プロでもよくある線形回帰モデルの間違い - Qiita
    deejayroka
    deejayroka 2023/01/10
    "「多重共線性 = 悪いもの」と捉え、考えなしに変数を除外するのは間違いです。交絡因子として必要なのかどうか、背後の関係を考えて慎重に意思決定する必要があります"
  • Python: 特徴量の重要度を Permutation Importance で計測する - CUBE SUGAR CONTAINER

    学習させた機械学習モデルにおいて、どの特徴量がどれくらい性能に寄与しているのかを知りたい場合がある。 すごく効く特徴があれば、それについてもっと深掘りしたいし、あるいは全く効かないものがあるなら取り除くことも考えられる。 使うフレームワークやモデルによっては特徴量の重要度を確認するための API が用意されていることもあるけど、そんなに多くはない。 そこで、今回はモデルやフレームワークに依存しない特徴量の重要度を計測する手法として Permutation Importance という手法を試してみる。 略称として PIMP と呼ばれたりすることもあるようだ。 この手法を知ったのは、以下の Kaggle のノートブックを目にしたのがきっかけだった。 Permutation Importance | Kaggle あんまりちゃんと読めてないけど、論文としては Altmann et al. (2

    Python: 特徴量の重要度を Permutation Importance で計測する - CUBE SUGAR CONTAINER
  • Python: scikit-learn で主成分分析 (PCA) してみる - CUBE SUGAR CONTAINER

    主成分分析 (PCA) は、主にデータ分析や統計の世界で使われる道具の一つ。 データセットに含まれる次元が多いと、データ分析をするにせよ機械学習をするにせよ分かりにくさが増える。 そんなとき、主成分分析を使えば取り扱う必要のある次元を圧縮 (削減) できる。 ただし、ここでいう圧縮というのは非可逆なもので、いくらか失われる情報は出てくる。 今回は、そんな主成分分析を Python の scikit-learn というライブラリを使って試してみることにした。 今回使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.12.4 BuildVersion: 16E195 $ python --version Python 3.6.1 下準備 あらかじめ、今回使う Python のパッケージを pip でインストールしておく。

    Python: scikit-learn で主成分分析 (PCA) してみる - CUBE SUGAR CONTAINER
  • 1