Not your computer? Use a private browsing window to sign in. Learn more about using Guest mode
Not your computer? Use a private browsing window to sign in. Learn more about using Guest mode
小川 明彦, 阪井 誠 : チケット駆動開発 日本のソフトウェア開発の現場で生み出された「チケット駆動開発」という概念を、数多くの実例を元にモデル化・体系化を試みた最初の本。 小川 明彦, 阪井 誠 : Redmineによるタスクマネジメント実践技法 Redmineによるチケット駆動開発の実践技法に関する最初の本。アジャイルなソフトウェア開発への適用方法、TestLinkによるテスト管理手法についても言及。 清水 吉男: 「派生開発」を成功させるプロセス改善の技術と極意 組込システム開発をベースとして、ソフトウェア開発特有のスタイルである派生開発、特にXDDPについて解説した世界でも稀な本。既存製品を保守するのではなく継続的に機能追加していく昨今の開発では、派生開発特有の問題を意識しなければならない。XDDPはプロセス論だけでなく、要件定義などの上流工程の品質改善にも役立つので注意。 Le
Mahoutシリーズ目次(随時更新) 非分散レコメンデーション Apache Mahoutで機械学習してみるべ - 都元ダイスケ IT-PRESS (これ) レコメンデーションの簡単な原理を視覚的に把握してから実際に計算してみる - 都元ダイスケ IT-PRESS 機械学習における重大な"仮定"と、アルゴリズムの評価 - 都元ダイスケ IT-PRESS 分散レコメンデーション Mahoutで分散レコメンド(1) - 都元ダイスケ IT-PRESS Mahoutで分散レコメンド(2) - 都元ダイスケ IT-PRESS Mahoutで分散レコメンド(3) - 都元ダイスケ IT-PRESS クラスタリング 今度はMahoutでクラスタリング - 都元ダイスケ IT-PRESS 今度はMahoutでクラスタリング(ソース編) - 都元ダイスケ IT-PRESS では、本文いきます。 Apach
JAVAでデータマイング! 『情報工学の難しいそうなアルゴリズムをJAVAで実装して、ひたすらその結果を公開する』ブログになる予定。 PR Calendar <<March>> S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Theme NaiveBayes ( 2 ) スムージング ( 0 ) はじめに ( 1 ) 計算テクニック ( 0 ) 外れ値除去 ( 0 ) LSH ( 4 ) 協調フィルタリング ( 0 ) ブースティング ( 0 ) Kmeans ( 0 ) 階層的クラスタリング ( 2 ) EMアルゴリズム ( 0 ) BM ( 0 ) SVD ( 0 ) PLSI ( 0 ) LDA ( 0 ) パーセプトロン ( 0 ) A
さてじゃあ今度は「ベイジアン・フィルター」を使ったスパム判定だ。何か「名前のついた技法」っていうと、結構ヘヴィなように感じるが、これはそれほどには大した技法ではない。原理は簡単だ。 「通常投稿の例」と「スパムの例」を収集して、その単語ベースの特徴を整理して保存しておく。それで入力テキストで使われる単語の特徴が、どちらに近いか?を判定する。で、「スパム」と入力が判定されたら、「スパムの例」にそれを追加し、「通常投稿」と判定されたら「通常投稿の例」に追加する。 まあ、そんな「学習」タイプのものなので、実はこの「ベイジアン・フィルター」は最近のメーラのスパム対策の主流になっている技術だ。とはいえ、これをそのまま持ってくる...となると、少し考慮が必要ではある。 掲示板スパムで今問題なのは、「(ほとんど)同じ内容の投稿」を大量に繰り返し投稿することだ。実はこのベイジアン・フィルターのアルゴリズムで
Complement Naive BayesがSVMより速いよーと主張していたので、SVMもなんか最近は速くなってるらしいよ、という事を紹介してみたい。近年はSVMなどの学習を高速に行うという提案が行われており、実装が公開されているものもある。その中の一つにliblinearという機械学習ライブラリがある。ライブラリ名から推測できる通り、liblinearではカーネルを使うことが出来ない。しかし、その分速度が速く、大規模データに適用できるという利点がある。 liblinearを作っているのはlibsvmと同じ研究グループで、Chih-Jen Linがプロジェクトリーダーであるようだ。libsvmはかなり有名なライブラリで、liblinearにはそういった意味で安心感がある。(liblinearの方は公開されてしばらくは割とバグがあったらしいけど。) liblinearにはL1-SVM, L
新はてブ正式リリース記念ということで。もうリリースから何週間も経っちゃったけど。 新はてなブックマークではブックマークエントリをカテゴリへと自動で分類しているが、このカテゴリ分類に使われているアルゴリズムはComplement Naive Bayesらしい。今日はこのアルゴリズムについて紹介してみる。 Complement Naive Bayesは2003年のICMLでJ. Rennieらが提案した手法である。ICMLというのは、機械学習に関する(たぶん)最難関の学会で、採択率はここ数年は30%を切っている。2003は119/371で、32.1%の採択率だったようだ。 Complement Naive Bayesの位置づけは 実装が簡単 学習時間が短い 性能もそこそこよい という感じで、2003年段階にあっても、絶対的な性能ではSVMに負けていた。しかし、学習が早いというのは実アプリケーシ
集合知プログラミング 作者: Toby Segaran,當山仁健,鴨澤眞夫出版社/メーカー: オライリージャパン発売日: 2008/07/25メディア: 大型本購入: 91人 クリック: 2,220回この商品を含むブログ (277件) を見る当初はサンプルコードがPythonということで購入した本書ですが、読んでみると内容の素晴らしさに驚嘆しました。私が今までに読んだオライリーシリーズでも屈指の名作だと思います。 『集合知プログラミング』とは 『集合知プログラミング』は、Amazonの協調フィルタリングのように、ウェブ上のデータを収集してユーザーの嗜好にあったコンテンツを推薦したり、大量のデータを分かりやすく分類・可視化するプログラムを簡単に実装する技術を解説した書籍です。Webプログラミングをかじったことのある方でしたら、だれしもAmazonのような推薦サービスを作ってみたいと思ったこと
In recent times, much discourse has centered around the burgeoning realm of generative AI. This prompts an inquiry into how IT service providers should adeptly surf this emerging wave, specifically, which business avenues merit exploration. The term "wave" offers an intriguing metaphor for contemplating business strategies. In this context, "wave" transcends mere nomenclature; it embodies a metaph
データを確率の枠組みでとらえる「ベイズの定理」 今回は「ベイズの定理」を概説し、この定理をプロジェクト管理にどのように利用するのか説明します。「ベイズの定理」は確率論や統計学において知られている定理であり、さまざまな事象に関するデータを確率論の枠組みで取り扱うことができるという点で有用な定理です。 確率論の枠組みでデータをとらえることができるという点は、確率や統計の知識のある方にとっては特に大きな利点であるように思えないと思いますが、これがまさにベイズの定理の特徴であるということを説明します。 なおベイズの定理はさまざまな応用があります。この定理を使った内容を総じて「ベイズ的」もしくは「ベイジアン」(Bayesian)と呼びます。今回は、ページ数の都合もあり、ベイズ的意志決定に焦点を当て、特にプロジェクト管理における課題を例として説明していきます。 統計を用いた意思決定 ベイズ的意思決定の
※ 画像は公式サイトより これは面白い! Amazonの強さは物流システムやECサイトの使い勝手などもあるが、完全なコンピュータベースでのリコメンデーションにもその一因がある。ユーザの行動履歴を全て補足し、そのユーザにあった商品を提案することで購入につなげるシステムだ。 デモアプリケーション。記事を選択すると、別な記事を提案する これは何もECサイトに限らず、最近でははてなブックマークでも関連記事を載せるようになっている。ニーズの連結をはかることで、さらにユーザをつなぎ止めておくことができるようになる。 今回紹介するオープンソース・ソフトウェアはRichContext、オープンソースのリコメンデーションエンジンだ。なおライセンスはApacheライセンスをベースにしているが、修正して独自のライセンスになっているのでご注意いただきたい。 RichContextは専用のアプリケーションサーバを介
"集合知プログラミング" という本が出たらしい. 私の積読には元本の "Programming Collective Intelligence" があって, 途中まで読んだまま放置していたら日本語訳が出てしまった. (オライリーのアンチパターンと命名.) 悔しいので本は処分. そのうち日本語版で続きを読もう.... 興味を持っていたのは推薦エンジン(協調フィルタ)だった. 私の中では検索エンジンに匹敵するウェブのハイテクという位置付けなんだけど, 草の根には普及しておらず悲しい. 検索エンジンでの Hyper Estraier や senna に相当する協調フィルタの立ち位置は デッドヒートが予想される...とだいぶ前から思ってるんだけど, いまのところ閑古鳥気味. まったく, 出し抜くだけの実力があればなあ. 先の皇帝ペンギン本では, 一章にさっそく協調フィルタが登場する. 読んでみると
協調フィルタリング 渡辺 崇文, 廣安 知之, 三木 光範 ISDL Report No. 20071019004 2007年 9月 19日 Abstract レコメンデーションサービスのための手法として,協調フィルタリングがある.協調フィルタリングは,ユーザの嗜好情報を元に各ユーザ間の類似度を計算し,その類似度に基づいてユーザの嗜好を推測するシステムである.協調フィルタリングは,Amazonのお勧め機能に採用されていることで有名である. 本報告では,協調フィルタリングについて,その背景や関連概念,応用されているサービス等について調査を行った. 1 はじめに レコメンデーションサービスを提供する際に使用される手法として,協調フィルタリングがある.協調フィルタリングは,ユーザの嗜好情報を元に各ユーザ間の類似度を計算し,その類似度に基づいてユーザの嗜好を推測するシステムである. 本報告
印刷する メールで送る テキスト HTML 電子書籍 PDF ダウンロード テキスト 電子書籍 PDF クリップした記事をMyページから読むことができます 前回は、ECサイトのレコメンド技術の種類として、ルールベース方式、コンテンツベースフィルタリング方式、協調フィルタリング方式、ベイジアンネットワーク方式の4つを紹介した。今回は、これらのレコメンド方式をより細分化した上で、協調フィルタリングのロジックについて解説したい。 4つのレコメンド方式は、「レコメンドするために必要な情報は何なのか」、「何をもってレコメンドするためのルールとするか」という切り口で分類していると解説した。それぞれのレコメンド方式は、さらに「どの判別属性を軸にレコメンドアイテムを決定しているのか」という切り口によって細分化できる。その判別属性とは、アイテムベース、ユーザーベース、ユーザー提示情報ベースの3つだ。 例えば
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く