はじめに 語彙力なくてすみません、 browser-use は、「AI エージェントがウェブブラウザを操作できるようにする」ためのライブラリです。 プロンプトで与えられた指示どおりに動き、ほかの技術と比較しても精度が抜群に高いです。 早速試してみます。 実践 複数のECサイトから特定の商品価格を取得することを目標とする。 Python は 3.11 以上が必要です。
Opik (built by Comet) is an open-source platform designed to streamline the entire lifecycle of LLM applications. It empowers developers to evaluate, test, monitor, and optimize their models and agentic systems. Key offerings include: Comprehensive Observability: Deep tracing of LLM calls, conversation logging, and agent activity. Advanced Evaluation: Robust prompt evaluation, LLM-as-a-judge, and
概要 LLMに関心があり、ChatGPTやtransformerの仕組みを理解したいと思っていたところ、雰囲気を掴むのにこちらの動画がとても参考になりました。 動画の内容としては、以下のコーパスを学習して、直前の数文字から次の1文字(単語ではないことに注意)予測機を作成するというものです。 この動画で完成するコードは以下で、225行しかなくとても読みやすいです。 また短いですがtransformerのエッセンスが詰まっていて勉強になりそうです。 このコードを読み解くことでGPTやtransformerがどのように動いているのか、ざっくり理解してみようと思います。 ちなみに完成するとこんな感じの文字列が生成されます。ぱっと見文章っぽいですね。 first Scitizen: He's enough; but he cannot give his friends. MARCIUS: Do yo
import langroid as lr import langroid.language_models as lm # set up LLM llm_cfg = lm.OpenAIGPTConfig( # or OpenAIAssistant to use Assistant API # any model served via an OpenAI-compatible API chat_model=lm.OpenAIChatModel.GPT4o, # or, e.g., "ollama/mistral" ) # use LLM directly mdl = lm.OpenAIGPT(llm_cfg) response = mdl.chat("What is the capital of Ontario?", max_tokens=10) # use LLM in an Agent
【📩 仕事の相談はこちら 📩】 お仕事の相談のある方は、下記のフォームよりお気軽にご相談ください。 https://forms.gle/G5g1SJ7BBZw7oXYA7 もしもメールでの問い合わせの方がよろしければ、下記のメールアドレスへご連絡ください。 info*galirage.com(*を@に変えてご送付ください) 🎁 「生成AIの社内ガイドライン」PDFを『公式LINE』で配布中 🎁 「LINEで相談したい方」や「お問い合わせを検討中の方」は、公式LINEでご連絡いただけますと幸いです。 (期間限定で配信中なため、ご興味ある方は、今のうちに受け取りいただけたらと思います^^) https://lin.ee/3zRuqKe おまけ①:生成AIアカデミー より専門的な「生成AIエンジニア人材」を目指しませんか? そんな方々に向けて、「生成AIアカデミー(旧:生成AIエンジニア
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く