東京大学深層学習(Deep Learning基礎講座2022)https://deeplearning.jp/lectures/dlb2022/ 「深層学習と自然言語処理」の講義資料です。
      
  
  
  はじめに: 本講座は「機械学習ってなんか面倒くさそう」と感じている プログラマのためのものである。本講座では 「そもそも機械が『学習する』とはどういうことか?」 「なぜニューラルネットワークで学習できるのか?」といった 根本的な疑問に答えることから始める。 そのうえで「ニューラルネットワークでどのようなことが学習できるのか?」 という疑問に対する具体例として、物体認識や奥行き認識などの問題を扱う。 最終的には、機械学習のブラックボックス性を解消し、所詮は ニューラルネットワークもただのソフトウェアであり、 固有の長所と短所をもっていることを学ぶことが目的である。 なお、この講座では機械学習のソフトウェア的な原理を中心に説明しており、 理論的・数学的な基礎はそれほど厳密には説明しない。 使用環境は Python + PyTorch を使っているが、一度原理を理解してしまえば 環境や使用言語が
      
  Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ※実際記事で紹介する書籍は12冊ですが、メンバーが借りてオフィスになかったため、上記画像内に3冊ないものがあります。 はじめに AI Academyを開発・運営しています、株式会社エーアイアカデミー代表の谷です。 6ヶ月ほど前に書いた下記記事は約1200のいいねと7万viewsを超える記事になりました。 【保存版・初心者向け】独学でAIエンジニアになりたい人向けのオススメの勉強方法 お読み頂いた方々、またいいねして頂いた方々ありがとうございました! あれから6ヶ月ほど経ちまして、さらにPythonや機械学習の書籍が増えて参りましたので、
      
  1カ月ほど前から、東京大学の松尾研のディープラーニング公開講座に行っている。 ネットで募集していたのであわてて申し込んだら、とんでもない数の人が集まっていて熱気がすごい。学部生、院生、社会人、あわせて300人以上が同時に授業を受けている。 初回こそ、人工知能概論のような話だったけれど、2回目以降はものすごい速度で授業が進む。そして宿題の量と質もすごい。2回と3回目の授業だけで、普通の学校の半年分くらいの内容になっている気がする。東大、ほんとにやべーよ。 毎回、授業の冒頭は「ふんふん、そうか」とはじまるのだけれど、終わり間近に大量のサンプルコードを見せられて、それをすごい勢いで説明され、最後にゴツイ宿題が出る。授業終了後は、ポカーンってなる(授業中にぜんぶ理解しているひと、どれくらいいるんだろう)。 友人の物書堂の社長の広瀬くん(iPhone辞書アプリ開発の大御所!)も、たまたまいっしょに講
      
  この記事はトレタ Advent Calendar 2016の22日目です。 21日目はswdhの ActiveRecordオブジェクトを関連ごとシリアライズしてデシリアライズするでした。 スナップショット的にその時点のモデルを関連モデル含めて保存したい、っていう要望はBtoBやってると結構遭遇しますね。テーブルをちゃんと正規化すればするほど難しくなるやつなのでgem化されてるとありがたいです。 さて、この記事ではゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装を読んでpythonに入門するところから初めてニューラルネットワークを実際に実装して見た所感を記述します。平たく言えば読書感想文です。 ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装 作者: 斎藤康毅出版社/メーカー: オライリージャパン発売日: 2
      
  ディープラーニングの本格的な入門書。外部のライブラリに頼らずに、Python 3によってゼロからディープラーニングを作ることで、ディープラーニングの原理を楽しく学びます。ディープラーニングやニューラルネットワークの基礎だけでなく、誤差逆伝播法や畳み込みニューラルネットワークなども実装レベルで理解できます。ハイパーパラメータの決め方や重みの初期値といった実践的なテクニック、Batch NormalizationやDropout、Adamといった最近のトレンド、自動運転や画像生成、強化学習などの応用例、さらには、なぜディープラーニングは優れているのか? なぜ層を深くすると認識精度がよくなるのか? といった“Why”に関する問題も取り上げます。 関連ファイル サンプルコード 正誤表 書籍発行後に気づいた誤植や更新された情報を掲載しています。お手持ちの書籍では、すでに修正が施されている場合がありま
      
  リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く